最近开始学习机器学习,以下会记录我学习中遇到的问题以及我个人的理解 决策树算法,网上很多介绍,在这不复制粘贴。下面解释几个关键词就好。 信息熵(entropy):就是信息不确定性的多少 H(x)=-ΣP(x)log2[P(x)]。变量的不确定性越大,熵就越大。  
# Python 决策树包的实现流程
## 1. 了解决策树算法
在开始使用 Python 实现决策树包之前,我们需要先了解决策树算法的基本原理。决策树是一种基于树结构的机器学习算法,通过对样本数据进行递归分割,构建一个树形模型来进行分类或回归预测。决策树的核心是选择合适的属性进行分割,并根据属性值的不同进行分支。
## 2. 安装 Python 决策树包
在开始编写代码之前,我们需要先安
原创
2023-07-20 09:11:54
1046阅读
选自Machine Learning Mastery作者:Jason Brownlee机器之心编译参与:沈泽江、吴攀决策树算法是一个强大的预测方法,它非常流行。因为它们的模型能够让新手轻而易举地理解得和专家一样好,所以它们比较流行。同时,最终生成的决策树能够解释做出特定预测的确切原因,这使它们在实际运用中倍受亲睐。同时,决策树算法也为更高级的集成模型(如 bagging、随机森林及 gradien
决策数(Decision Tree)在机器学习中也是比较常见的一种算法,属于监督学习中的一种。看字面意思应该也比较容易理解,相比其他算法比如支持向量机(SVM)或神经网络,似乎决策树感觉“亲切”许多。优点:计算复杂度不高,输出结果易于理解,对中间值的缺失值不敏感,可以处理不相关特征数据。缺点:可能会产生过度匹配的问题。使用数据类型:数值型和标称型。简单介绍完毕,让我们来通过一个例子让决策树“原形毕
转载
2024-04-28 16:58:43
43阅读
决策树(Decision Tree)算法是一种基本的分类与回归方法,是最经常使用的数据挖掘算法之一。我们这章节只讨论用于分类的决策树。 决策树模型呈树形结构,在分类问题中,表示基于特征对实例进行分类的过程。它可以认为是 if-then 规则的集合,也可以认为是定义在特征空间与类空间上的条件概率分布。 决策树学习通常包括 3 个步骤:特征选择、决策树的生成和决策树的修剪。2、决策树 场景场景1:一个
转载
2024-02-12 13:45:28
50阅读
背景与原理:决策树算法是在各种已知情况发生概率的基础上通过构成决策树来求某一事件发生概率的算法,由于这个过程画成图解之后很像一棵树形结构,因此我们把这个算法称为决策树。而在机器学习中,决策树是一种预测模型,代表对象属性和对象值之间的一种映射,一棵决策树的每个内部节点会处理数据的某个维度对应的变量,根据这个变量的取值向下进行分支,直到走到叶节点,每个叶节点代表输入对应的一个最终输出。决策树生成算法有
转载
2023-06-13 19:58:10
191阅读
学习决策树时,发现如果要用python画决策树,python需要导入Graphviz库,看了几篇csdn,发现个别文章不是很全,会出错误,这里简单记录下完整过程。 文章目录0.下载Graphviz-2.38.msi1.安装Graphviz-2.38.msi2.配置环境变量3.验证4.跑个图看看5.总结 0.下载Graphviz-2.38.msigraphviz-2.38 .msi当然这里你去官网安
转载
2023-10-02 21:16:06
131阅读
Python实现一
在这里我们先调用sklearn算法包中的接口,看一下算法的效果。
实验数据(可能你并不陌生~~~):
1.5 50 thin
1.5 60 fat
1.6 40 thin
1.6 60 fat
1.7 60 thin
1.7 80 fat
1.8 60 thin
1.8 90 fat
1.9 70 thin
1.9 80 fa
转载
2024-03-19 00:08:59
26阅读
机器学习实验二---决策树python一、了解一下决策树吧决策树基本流程信息增益决策树的优缺点二.数据处理三.决策树的构建计算给定数据集的香农熵按照给定特征划分数据集选择最好的数据划分方式:递归构建决策树四.使用Matplotlib注解绘制树形图五.总结出现的问题及解决办法:实验结果分析2022/11/12 一、了解一下决策树吧决策树(decision tree)是一类常见的机器学习方法.以二分
转载
2023-09-10 21:30:44
77阅读
机器学习—决策树算法的python实现想要实现的效果先来看下结果程序原理数据完整代码(附有具体解析) 想要实现的效果对于这个不好玩的决策树,我想要得到的就是通过决策树训练我的数据然后生成这棵决策树,再进行测试,把辣鸡数据输入得出最后的预测结果先来看下结果1.得到的辣鸡决策树 哇,调用graph模块竟然可直接生成如下的PDF图片诶 2.那随手在来张测试结果的截图吧程序原理这个什么鬼原理就是先将训练
# Python调用决策树包
## 简介
决策树是一种常用的机器学习算法,它通过树结构来建立模型,并根据特征值进行分类或预测。Python作为一种强大的编程语言,有许多机器学习的包可以用来调用决策树算法,如scikit-learn、pytorch等。本文将介绍如何使用Python调用决策树包进行分类任务。
## 安装决策树包
首先,我们需要安装决策树包。以scikit-learn为例,可以
原创
2023-09-19 17:27:50
73阅读
# 使用Python实现决策树算法
决策树是一种常用的监督学习算法,广泛应用于分类与回归问题。本文将带您从零开始实现一个简单的决策树算法,具体步骤如下:
## 流程概述
为了能够更有条理地实现决策树算法,我们可以把整个过程分为以下几个步骤:
| 步骤 | 描述 |
|------|----------
这几期和大家聊聊使用Python进行机器学习题外话:之前一期“ scrapy抓取当当网82万册图书数据 ” 的 Github 链接Python拥有强大的第三方库,使用Python进行科学计算和机器学习同样需要先配置运行环境。这里我们需要安装Anaconda,官方给出的下载链接太慢,而且经常下载到一半卡死,这里我提供我下载好的Numpy:提供数组支持,以及相应的高效处理函数;Scipy:提供矩阵支持
转载
2023-08-17 16:26:39
112阅读
# 使用 Python 的 Pydotplus 包可视化决策树
## 引言
决策树是一种经典的机器学习方法,广泛应用于分类和回归问题。通过对特征进行分裂,决策树能够生成一棵树形结构,以简单直观的方式展示决策过程。Python 提供了多个包来实现决策树的构建和可视化,其中 Pydotplus 是一个相对常用的可视化工具。本文将介绍如何使用 Pydotplus 包来可视化决策树,并给出相应的代码示
原创
2024-08-02 05:57:00
204阅读
文章目录一、决策曲线分析概念1. 阈值概率2. 净获益二、matplotlib实现1. 计算模型带来的净获益2. 计算treat all策略带来的净获益3. 绘制决策曲线三、完整代码四、拓展1. bootstrapping法校正净获益2. k折交叉验证法校正净获益3. 计算净获益的置信区间五、更新 一、决策曲线分析概念预测模型(predictive models)被广泛地应用于诊断(diagno
转载
2023-10-16 03:30:03
297阅读
【此文介绍了贝叶斯公式】现在举一个例子说明怎么使用贝叶斯公式来做决策。例子:假设有100个人,每个人都有自己的生日。1年有12个月,假设这100个人的生日从1月到12月的人数的分布情况如下: 3 4 5 7 1
转载
2024-01-08 21:14:52
74阅读
scikit-learn简称sklearn,支持包括分类、回归、降维和聚类四大机器学习算法。还包含了特征提取、数据处理和模型评估三大模块。sklearn是Scipy科学计算库的扩展,建立在NumPy和matplotlib库的基础上。利用这几大模块的优势,可以大大提高机器学习的效率。 Scikit-learn项目最早由数据科学家 David Cournapeau 在 2007 年发起,需要Nu
转载
2023-11-13 13:56:01
50阅读
Python 卡方决策,下面介绍一个常见的统计决策。这是一个关于数据是否随机分布的卡方决策。为了做出这个决策,需要计算一个预期分布,并将观察到的数据与预期进行比较。相差较大意味着需要进一步研究。相差不大意味着可以使用零假设,因为没什么值得研究了,即这些差异仅仅是随机变化造成的。下面介绍如何使用Python来处理数据。首先介绍一些不属于案例研究的背景知识,但常出现在EDA应用程序中。需要收集原始数据
转载
2023-11-25 13:53:55
45阅读
决策树决策树是一种常用的机器学习方法,它基于树的结构,依次根据不同属性值来进行数据分类,具体算法原理及细节可以参考之前写的决策树和MATLAB函数使用决策树的优点:采用递归进行数据训练、数据分类,因此计算复杂度不高,可以清晰理解哪些属性重要。决策树的缺点:不太适用于连续值的划分(划分节点过多可能造成过拟合),即类别太多时,泛化误差高,一般需要剪枝处理。决策树分类构建一颗决策树主其实是一个递归的过程
转载
2023-08-30 07:25:00
56阅读
简述决策线是2特征时的分类超平面方程,当方程不能表示成y=f(x)或者x=f(y)形式时,不能直接用x或者y方向的单向采样绘制决策线。zyq给出的做法是,在一个范围内用采样的点(x,y)去激活分类器,得到其类别,从而得到这个范围内各个采样点的类别,将不同类别的点绘制成不同颜色,可以展示出分类面的形状特征。这种做法的缺陷是,采样范围难以察觉,并且得到的实际上是决策线两侧的点。可以用pyplot下的c
转载
2023-11-13 22:45:08
201阅读