利用直方图距离计算图片相似计算公式:其中,G和S为两张图片的图像颜色分布直方图,N为颜色空间样点数。这里使用分块的方法计算相似,用以提高各部分的特征,防止图片颜色相似导致计算相似高。利用平均哈希算法计算图片相似计算步骤:缩放图片:一般大小为8*8,64个像素值简化色彩,转化为灰度图:可以使用Image的convert(‘L’)方法计算平均值:计算出灰度图所有像素点的像素值的平均值比较像素
几个常用的程序块,整理一下:计算余弦相似主要就是计算二范数,以及两个向量内积。''' 计算余弦相似 ''' from scipy.linalg.misc import norm def cosineSimilarity(vec1, vec2): cosine = sum(vec1 * vec2) / (norm(vec1) * norm(vec2)) return cosine
概述  在日常生活中很多场景应用到了轨迹相似计算,如:地图路线匹配、发现新冠病毒易感人群等。目前主要使⽤的相似性分析⽅法可以分为基于规整的方法(包括动态时间规整(DTW)、最⻓公共⼦序列(LCSS)和基于真实序列的编辑距离(EDR)等)和基于形状的⽅法(包括 Hausdorff 距离、单向距离 (OWD) 和 Fréchet距离等)。这些传统⽅法必须计算采样点之间的距离,计算复杂,计算量⼤。
在这篇博文中,我将详细讲解如何使用 Python 计算图像的相似,整个过程将涵盖环境准备、集成步骤、配置详解、实战应用、排错指南和性能优化。 ## 环境准备 在开始之前,我们需要确保所有依赖项正确安装。以下是需要安装的基本库和版本。 | 库名 | 版本 | 备注 | |---------------|------------
原创 5月前
22阅读
摘要:        为了提高源程序代码之间相似性的检测效率,提出一种基于序列聚类的相似代码检测算法. 算法首先把源代码按照其自身的结构进行分段提取,然后对各个分段进行部分代码变换,再以带权重的编辑距离为相似度量标准对这些符号进行序列聚类,得到相似的程序代码片段,以达到对源程序进行相似功能检测的目的.应用: &nbsp
两幅图像的特征相似性对比图像特征相似性SSIMSSIM特征相似性检验 图像特征相似性通过PSNR、SSIM以及图像特征对两幅图像进行相似性比较,下面把比较的代码和函数输出搬上来以供参考。SSIMSSIM评估流程如下:对于输入两副图像,首先计算亮度评价并进行比对,得到第一个相似性对比,在此基础上减去亮度评价影响,计算对比评价,得到对比对比,再用上步结果除掉对比评价进行结构评价,得到结构对比,
我们在比较事物时,往往会用到“不同”,“一样”,“相似”等词语,这些词语背后都涉及到一个动作——双方的比较。只有通过比较才能得出结论,究竟是相同还是不同。但是万物真的有这么极端的区分吗?在我看来不是的,生活中通过“相似”这词来描述可能会更加准确。比如男人和女人,虽然生理器官和可能思想有些不同,但也有相同的地方,那就是都是人,就是说相似不为0;比如石头与小草,它们对于虚拟类都是一种实体类,相似
转载 2024-08-03 15:51:43
203阅读
前言本文介绍了3篇二进制代码相似性分析的顶会技术,他们体现了二进制代码相似性分析中一些最先进的思想。第一篇是Genius技术,是在《基于神经网络图嵌入的跨平台二进制代码相似性检测》论文中作为对比技术介绍,它首次使用图嵌入这个机器学习的概念去做二进制代码相似性分析,它涉及到了聚类算法、图比对、密码本等技术,也为后两篇论文打下了基础。第二篇是Gemini技术,它使用了更先进的Structur
# Java代码相似计算的科普文章 在当今的软件开发环境中,代码的质量和可维护性显得尤为重要。特别是在一个大型项目中,团队成员可能会编写相似代码,这会导致冗余和维护难度增加。因此,开发者们开始关注代码相似计算,以发现和消除这些冗余部分。本文将介绍Java代码相似计算方法,并通过实例展示如何实现这一目标。 ## 代码相似的概念 代码相似计算的目标是通过比较不同代码片段来找出它们的
摘要:本文利用ssim算法,帮你快速打造一个“刷脸测试夫妻相”Demo出来。,作者: HWCloudAI 。“夫妻相”是指两人之间的相貌让人感觉是一对夫妻,还有一种说法是指夫妻之间面容相似。有研究认为:两个人在一起生活得久了,表情动作彼此模仿,会越来越像。其实是因为大多数人都珍爱自己,看到跟自己相像的人格外顺眼,从一开头就是拿自己当范本选择另一半。“夫妻相”的大抵意思是因为常常接触,心灵相倾,习惯
转载 1月前
387阅读
# Python计算文本相似的多种方法 在今天的信息时代,文本相似计算显得尤为重要。无论是在自然语言处理、推荐系统,还是在搜索引擎中,了解文本之间的相似性都有助于提升用户体验。本文将介绍几种常见的文本相似计算方法,并提供相关Python代码示例。 ## 什么是文本相似? 文本相似是衡量两段文本在语义或结构上的相似程度。常用的方法包括: 1. 基于词的相似(如余弦相似) 2
原创 2024-10-01 10:11:44
436阅读
文本相似,顾名思义是指两个文本(文章)之间的相似,在搜索引擎、推荐系统、论文鉴定、机器翻译、自动应答、命名实体识别、拼写纠错等领域有广泛的应用。与之相对应的,还有一个概念——文本距离——指的是两个文本之间的距离。文本距离和文本相似是负相关的——距离小,“离得近”,相似高;距离大,“离得远”,相似低。业务上不会对这两个概念进行严格区分,有时用文本距离,有时则会用文本相似。欧氏距离 欧氏距
 借助三维坐标系来看下欧氏距离和余弦相似的区别              从图上可以看出欧式距离衡量的是空间中各点之间的绝对距离,和点所在的位置坐标(即个体各维度的特征数值)直接相关,距离越小,两向量之间越相似;而余弦相似衡量的是空间中两向量之间的夹角,体现的是方向上的差异,夹角越小(余弦相似越大),两
编程:所用python的包下的gensim。 编程路径: 1.读取文档 2.对要计算的文档进行分词 3.把文档按照空格整理成一个超长的字符串 4.计算词语出现的频率 5.对频率低的词进行过滤,如果文档过小就不用选,过大的话把频率过低的词过滤后,在更快计算 6.通过语料库建立词典 7.加载要对比的文档 8.将要对比的文档通过doc2bow转化为稀疏向量 9.对稀疏向量进行处理,获得新语料库 10.将
六、莱文斯坦编辑距离前边的几种距离计算方法都是针对相同长度的词项,莱文斯坦编辑距离可以计算两个长度不同的单词之间的距离;莱文斯坦编辑距离是通过添加、删除、或者将一个字符替换为另外一个字符所需的最小编辑次数;我们假设两个单词u、v的长度分别为i、j,则其可以分以下几种情况进行计算当有一个单词的长度为0的时候,则编辑距离为不为零的单词的长度;\[ld_{u,v}(i,j)=max(i,j)\; \;
相似计算总结 + 图解在数据分析和数据挖掘以及搜索引擎中,我们经常需要知道个体间差异的大小,进而评价个体的相似性和类别。常见的比如数据分析中比如相关分析,数据挖掘中的分类聚类(K-Means等)算法,搜索引擎进行物品推荐时。相似就是比较两个事物的相似性。一般通过计算事物的特征之间的距离,如果距离小,那么相似大;**如果距离大,那么相似小。**比如两种水果,将从颜色,大小,维生素含量等特征进
这里主要面向初学者介绍句子相似目前主流的研究方向。从词到句子,这是目前中文相似计算的主要思想。而由这个-思想引申出来的算法却非常多,这里面向初学者介绍比较容易实现的方法。这里要介绍的是二分法计算句子相似。这个算法实现简单,思路清晰由此出现的技术分类变化万千,主要的变化是分组,也成为分集合。二分法的思想是:集合一和集合二是两个词的集合,集合一的每一个词与集合二的每一个词求相似,找出最大的一个
1. 文本相似计算-文本向量化2. 文本相似计算-距离的度量3. 文本相似计算-DSSM算法4. 文本相似计算-CNN-DSSM算法1. 前言最近在学习文本相似计算,前面两篇文章分别介绍了文本的向量化和文本的距离度量,这两篇文章的思路主要在机器学习的框架下面,本文准备换一个思路,从深度学习的角度来处理文本相似的问题。本文介绍DSSM(Deep Structured Semantic
常用的下面一些距离计算方式欧式距离(Euclidean Distance)余弦相似(Cosine)皮尔逊相关系数(Pearson)修正余弦相似(Adjusted Cosine)汉明距离(Hamming Distance)曼哈顿距离(Manhattan Distance)1.欧式距离(Euclidean Distance)欧式距离全称是欧几里距离,是最易于理解的一种距离计算方式,源自欧式空间中两
第三次实验报告程序语言:python 姓名: unicorn 学号: 12345678910 日期:2023/4/8一、 问题重述  给定两个程序,如何判断他们的相似性?二、 问题分析  先假设程序为C语言,不然题目太简洁了无从下手。C语言是比较基础的语言,我对C语言也比较了解,方便操作。然后还要假设比较的两个代码都是正确的,如果出现语法错误就没有规律可循了。   接着就是对源代码的预处理,要让文
  • 1
  • 2
  • 3
  • 4
  • 5