简介参考文档: https://python-parallel-programmning-cookbook.readthedocs.io/zh_CN/latest/chapter4/01_Introduction.html为实现程序并发执行和资源共享,提高程序效率,需要进行多线程以及多进程开发。在具体介绍之前,需要了解GIL.GIL是实现python解释器(CPython)时引入的一个概
转载
2024-02-25 05:03:07
42阅读
假设我们必须多线程任务创建大量线程。 由于线程太多,因此可能会有很多性能问题,这在计算上会是最昂贵的。 一个主要问题可能是吞吐量受限。 我们可以通过创建一个线程池来解决这个问题。 一个线程池可以被定义为一组预先实例化和空闲的线程,它们随时可以开始工作。 创建线程池比我们需要执行大量任务时为每个任务实例化新线程更受欢迎。 线程池可以管理大量线程的并发执行,如下所示 -如果线程池中的线程完成其执行,那
转载
2023-06-15 21:10:41
103阅读
# 通过Python stop进程服务
## 引言
在开发过程中,我们经常会碰到需要停止某个进程服务的情况。在Python中,我们可以通过一些简单的代码实现停止进程服务的功能。在本文中,我将向你介绍如何通过Python来停止进程服务。
## 流程
接下来,让我们来看一下停止进程服务的整个流程。下面的表格展示了实现这个功能的步骤:
| 步骤 | 描述
原创
2023-09-01 16:42:11
29阅读
进程的定义进程(Process)是计算机中的程序关于某数据集合上的一次运行
原创
2021-11-30 14:04:39
495阅读
一、问题描述现在有一段代码,需要扫描一个网段内的ip地址,是否可以ping通。执行起来效率太慢,需要使用协程。 #!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
import time
import signal
import subprocess
import gevent
import gevent.pool
from gev
转载
2023-08-13 19:26:16
120阅读
线程池的使用线程池的基类是 concurrent.futures 模块中的 Executor,Executor 提供了两个子类,即 ThreadPoolExecutor 和 ProcessPoolExecutor,其中 ThreadPoolExecutor 用于创建线程池,而 ProcessPoolExecutor 用于创建进程池。如果使用线程池/进程池来管理并发编程,那么只要将相应的 task
转载
2023-06-15 21:29:27
149阅读
很久没有用到进程池,今天公司项目需要大量进程,考虑使用进程池操作。其实很简单,几行代码就可以搞定,但是遇到了一个比较有意思的问题。之前写Python都是在Linux上,没有出现过,今天发现Windows上还是有一些区别。我以为很简单,导包,创建,使用,结束。五行搞定。from multiprocessing import Pool
pool = mp.Pool(processes=mp.cpu_c
转载
2023-07-28 08:03:45
178阅读
一、GIL:全局解释器锁 1 、GIL:全局解释器锁 GIL本质就是一把互斥锁,是夹在解释器身上的, 同一个进程内的所有线程都需要先抢到GIL锁,才能执行解释器代码2、GIL的优缺点: 优点: 保证Cpython解释器内存管理的线程安全 缺点:同一进程内所有的线程同一时刻只能有一个执行,也就说Cpython解释器的多线程无法实现并行 二、GIL与多线程 有了GIL的存
转载
2024-02-09 11:19:19
39阅读
进程池实现1.必要性【1】 进程的创建和销毁过程消耗的资源较多【2】 当任务量众多,每个任务在很短时间内完成时,需要频繁的创建和销毁进程。此时对计算机压力较大【3】 进程池技术很好的解决了以上问题。2.原理创建一定数量的进程来处理事件,事件处理完进 程不退出而是继续处理其他事件,直到所有事件全都处理完毕统一销毁。增加进程的重复利用,降低资源消耗。3.进程池实现【1】 创建进程池对象,放入适当的进程
转载
2023-05-18 14:10:07
237阅读
目录 一、什么是进程池或线程池二、理解同步、异步、三、multiprocess.Pool模块实现进程池3.1.1 Pool使用方法3.1.1 代码实例——multiprocess.Pool四、Python标准模块——concurrent.futures实现进程池和线程池4.1 介绍4.2 基本方法4.3 代码实例——ProcessPoolExecutor方式1:方式2:方式34.4 代码实例—
转载
2023-11-10 00:28:06
58阅读
前言
进程和线程,有很多地方非常类似,包括使用的方法也很多相同的,
所以我决定放到一起对比学习,
这一篇,专门对比:
进程池
线程池进程池为什么会有进程池?1,因为每次开启一个进程,都需要创建一个内存空间,这是耗时的2,进程过多,操作调度也会耗时,所以会有非常大的性能问题,所以我们不会让进程太大,我们会设计一个进程池,进程池的使用1,Python中先创建一个进程的池子,2,这个进程池能存放多少个进
转载
2023-11-09 22:41:25
84阅读
阅读目录 例1:使用进程池 例2:使用进程池(阻塞) 在利用Python进行系统管理的时候,特别是同时操作多个文件目录,或者远程控制多台主机,并行操作可以节约大量的时间。当被操作对象数目不大时,可以直接利用multiprocessing中的Process动态成生多个进程,十几个还好,但如果是上百个,上千个目标,手动的去限制进程数量却又太过繁琐,此时可以发挥进程池的功效。 Pool可以提
转载
2023-08-31 15:15:47
67阅读
在以下的文章之中我们来了解一下什么是python中的进程池。了解一下python进程池的相关知识,以及进程池在python编程之中能起到什么样的作用。进程池Pool类描述了一个工作进程池,他有几种不同的方法让任务卸载工作进程。进程池内部维护一个进程序列,当使用时,则去进程池中获取一个进程,如果进程池序列中没有可供使用的进进程,那么程序就会等待,直到进程池中有可用进程为止。我们可以用Pool类创建一
转载
2024-02-04 21:52:21
54阅读
python提供了一个跨平台的多进程支持——multiprocessing模块,其包含Process类来代表一个进程对象 1、Process语法结构:(注: 传参的时候一定使用关键字传参)
2、自定义进程类:需要继承Process类
自定义类的时候必须注意的事项:
 
转载
2023-10-13 11:23:18
76阅读
1. 进程池进程池,只开指定数目的进程数(一般是CPU内核数+1)这样调度多个任务时,执行效率要比同时开多个进程执行效率要高很多(因为当同时开多个进程时,开进程是很占用资源的,时间都浪费在开进程上面了)进程池方法-----p.map()from multiprocessing import Pool
import time
import random
def func(i):
time.s
转载
2023-08-10 16:15:48
235阅读
在前面的博客我也写了什么是池子, 池子就是里面的东西给你准备好了,你直接用就行了,相当于缓存。进程池也是创建进程的, 和前面 Process 类,Process 子类差别很大,进程池 可以一次创建多个进程,并且可以执行多个任务Process 类,Process 子类 ,需要实例化 才能达到,并不能真正意义上的多任务请看示例代码:解释在注释里,自己理解下,不懂请评论谢谢from multiproce
转载
2023-10-07 17:21:40
83阅读
可以使用与创建和使用线程池相同的方式创建和使用进程池。进程池可以定义为预先实例化和空闲进程的组,它们随时可以进行工作。当我们需要执行大量任务时,创建进程池优先于为每个任务实例化新进程。Python模块 - Concurrent.futuresPython标准库有一个名为 concurrent.futures 的模块。该模块是在Python 3.2中添加的,用于为开发人员提供启动异步任务的高级接口。
转载
2023-09-12 19:25:01
73阅读
一、可重复利用的线程1.队列计数器线程只能使用一次,只能执行一次任务,使用完成之后就丢失了,每次来一个任务我们就创建一个新的线程去执行这个任务,会有大的开销,资源和时间的浪费。这种情况下我们可以定义两个函数(两个任务),交给一个线程去完成。而多任务需要有存放空间,存放的空间可以是列表,字典,集合(去重),元组,队列。(1)使用队列进行重复利用其中的队列是先进先出的,并且 get 获取完元素后会删除
转载
2023-12-07 07:25:33
92阅读
1.进程池from multiprocessing import Pool
def func(n):
for i in range(10):
print(n+1)
if __name__ == '__main__':
pool = Pool(3) #启动有三个进程的进程池。
#第一个参数进程要访问的代码,第二个参数必须是一个可迭代参数,规定了要执行的任
转载
2023-06-25 15:30:28
133阅读
一、关于concurrent.futures模块 Python标准库为我们提供了threading和multiprocessing模块编写相应的多线程/多进程代码,但是当项目达到一定的规模,频繁创建/销毁进程或者线程是非常消耗资源的,这个时候我们就要编写自己的线程池/进程池,以空间换时间。但从Python3.2开始,标准库为我们提供了concurrent.futures模块,它提供了Thread
转载
2024-02-04 11:11:54
129阅读