我的配制IDE:PyCharm环境:AnacondaPython包:sklearn、numpy、matplotlib一、导入需要的Python包1. K-means在sklearn.cluster中,用到K-means时,我们只需:from sklearn.cluster import KMeansK-means在Python的三方库中的定义是这样的: class skle
转载 2024-02-01 21:37:43
508阅读
概念聚类分析:是按照个体的特征将它们分类,让同一个类别内的个体之间具有较高的相似度,不同类别之间具有较大差异性无分类目标变量(Y)——无监督学习K-Means划分法、DBSCAN密度法、层次法 1、导入数据  1 import pandas 2 from sklearn.cluster import KMeans 3 from sklearn.decomposi
转载 2024-08-22 14:12:03
92阅读
1.k均值简介k均值是一种无监督学习方法,当数据量小,数据维度低时,具有简单、快速、方便的优点,但是当数据量较大时,其速度较慢,也容易陷入局部最优。2. 步骤和以前一样,kMeans的原理在网上有很多讲解,所以这里不在赘述,直接给出步骤,而通过伪代码将是一个描述步骤的不错选择:随机初始化k个中心 while 有样本所属的中心发生改变时: for 每个样本i: 初始化所有簇
——以二维数组、鸢尾花和中国城市经纬度为实例先简单了解下Kmeans算法。算法属于无监督学习,其中的KMeans算法是将一组有N个样本的数据划分成K个不相交的 clusters (簇) C。 means (均值)通常被称为 cluster(簇)的 “centroids(质心)”; 注意,它们一般不是从 X 中挑选出的点,虽然它们是处在同一个 space(空间)。算法有三个步骤。要知道欧氏距
python实现kmeanskmeans++方法 一.kmeans:基本方法流程1.首先随机初始化k个中心点2.将每个实例分配到与其最近的中心点,开成k个3.更新中心点,计算每个的平均中心点4.直到中心点不再变化或变化不大或达到迭代次数优缺点:该方法简单,执行速度较快。但其对于离群点处理不是很好,这是可以去除离群点。kmeans的主要缺点是
转载 2023-06-27 10:36:22
194阅读
python绘制树状import pandas as pd import plotly.figure_factory as ff import chart_studio.plotly as py import chart_studio chart_studio.tools.set_credentials_file(username="用户名", api_key='秘钥') data = pd
算法简介kmeans算法是无监督学习算法,它的主要功能就是把相似的类别规到一中,虽然它和knn算法都是以k开头,但是knn却是一种监督学习算法.那我们怎样去区分样本间的相似性呢?其实计算相似性的方式有很多,其中最常用的是欧示距离。算法的实现原理假设我们有个样本点,这个样本点有个分类,首先我们随机选取个样本点作为质心,我们遍历个样本点,计算与每个质心的距离,找与哪一个质心的距离最小,那么就
基本思想这种方法的思想是把每个样品聚集到其最近均值的中,在它的最简单说明中,这个过程由下列三步所组成:(1)把样品粗略分成K个初始。(2)进行修改,逐个分派样品到其最近均值的中(通常用标准化数据或非标准化数据计算欧式距离)。重新计算接受新样品的和失去样品的的形心(均值)。(3)重复第二步,直到各类无元素进出。 KMeans算法流程KMeans算法是典型的基于距离的
在网上查看了些博客,感觉大家都对数学公式的解释的比较晦涩,下面我结合一个非常简单的示意图解释下他的数学公式,理解不到位的请留言。kmeans是一种算法下面是算法的描述给定训练样本是每一个,即每一个样本元素都是n维向量。为了便于理解在后面的示意图中采用二维的向量。step1:    随机选取k个质心点为step2:    重复下面过程直到手链&nb
Kmeans算法1 Kmeans算法的基本原理 K-means算法是最为经典的基于划分的方法,是十大经典数据挖掘算法之一。K-means算法的基本思想是:以空间中k个点为中心进行,对最靠近他们的对象归类。通过迭代的方法,逐次更新各中心的值,直至得到最好的结果。假设要把样本集分为k个类别,算法描述如下:  (1)适当选择k个的初始中心,最初一般为随机选取;  (2)在每次迭
转载 2024-04-15 12:44:09
1508阅读
可以简单理解为:使用距离算法将距离相近的东西成簇为一。 本篇使用python中 seaborn.clustermap绘制(clustermap)。 本文将了解到什么?欢迎随缘关注@pythonic生物人 1、成品(clustermap)展示 2、绘图数据集准备 3、 seaborn.clustermap绘制(clustermap
算法优缺点:优点:容易实现缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢使用数据类型:数值型数据算法思想k-means算法实际上就是通过计算不同样本间的距离来判断他们的相近关系的,相近的就会放到同一个类别中去。1.首先我们需要选择一个k值,也就是我们希望把数据分成多少,这里k值的选择对结果的影响很大,Ng的课说的选择方法有两种一种是elbow method,简单的说就是根据的结果和k的
作者 | 泳鱼一、简介Clustering ()是常见的unsupervised learning (无监督学习)方法,简单地说就是把相似的数据样本分到一组(簇),的过程,我们并不清楚某一是什么(通常无标签信息),需要实现的目标只是把相似的样本到一起,即只是利用样本数据本身的分布规律。算法可以大致分为传统算法以及深度算法:传统算法主要是根据原特征+基于划分/密度/层
转载 2024-04-22 20:10:30
34阅读
k-means算法是一种算法,所谓,即根据相似性原则,将具有较高相似度的数据对象划分至同一簇,将具有较高相异度的数据对象划分至不同类簇。与分类最大的区别在于,过程为无监督过程,即待处理数据对象没有任何先验知识,而分类过程为有监督过程,即存在有先验知识的训练数据集。k-means算法中的k代表簇个数,means代表簇内数据对象的均值(这种均值是一种对簇中心的描述),因此,k-
Kmeans算法1 Kmeans算法的基本原理 K-means算法是最为经典的基于划分的方法,是十大经典数据挖掘算法之一。K-means算法的基本思想是:以空间中k个点为中心进行,对最靠近他们的对象归类。通过迭代的方法,逐次更新各中心的值,直至得到最好的结果。假设要把样本集分为k个类别,算法描述如下:  (1)适当选择k个的初始中心,最初一般为随机选取;  (2)在每次迭
转载 2023-08-12 15:14:24
111阅读
系统又名“分层法”。聚类分析的一种方法。其做法是开始时把每个样品作为一,然后把最靠近的样品(即距离最小的群品)首先为小,再将已聚合的小按其间距离再合并,不断继续下去,最后把一切子类都聚合到一个大类。我们首先来简单举个例子这是生成的一个,这是聚类分析的核心内容,由来观察如何。步骤以n个样本为例: 定义以变量或指标的个数为维度的空间里的一种距离; 计算n个样本两两之间
K-means算法的优点是:首先,算法能根据较少的已知样本的类别对树进行剪枝确定部分样本的分类;其次,为克服少量样本的不准确性,该算法本身具有优化迭代功能,在已经求得的上再次进行迭代修正剪枝确定部分样本的,优化了初始监督学习样本分类不合理的地方;第三,由于只是针对部分小样本可以降低总的时间复杂度。K-means算法的缺点是:首先,在 K-means 算法中 K 是事先给定的,这
这个算法中文名为k均值算法,首先我们在二维的特殊条件下讨论其实现的过程,方便大家理解。第一步.随机生成质心由于这是一个无监督学习的算法,因此我们首先在一个二维的坐标轴下随机给定一堆点,并随即给定两个质心,我们这个算法的目的就是将这一堆点根据它们自身的坐标特征分为两,因此选取了两个质心,什么时候这一堆点能够根据这两个质心分为两堆就对了。如下图所示:第二步.根据距离进行分类红色和蓝色的点代表了我
之前一直用R,现在开始学python之后就来尝试用Python来实现Kmeans。之前用R来实现kmeans的博客:笔记︱多种常见模型以及分群质量评估(注意事项、使用技巧)聚类分析在客户细分中极为重要。有三比较常见的模型,K-mean、层次(系统)、最大期望EM算法。在模型建立过程中,一个比较关键的问题是如何评价结果如何,会用一些指标来评价。.一、scikit-lea
理论Python实现
原创 2022-11-02 09:43:44
191阅读
  • 1
  • 2
  • 3
  • 4
  • 5