前言:在使用python绘制决策树的时候,需要使用到matplotlib库,要想使用matplotlib库可以直接安装anaconda就可以了,anaconda中包含了许多的python科学计算库。在使用决策树算法进行分类的时候,我们可以绘制出决策树便于我们进行分析。对于在绘制决策树的时候使用中文显示出现乱码的时候,加下下面两句代码就可以正常显示#用来正常显示中文
plt.rcParams['fo
转载
2023-08-02 13:43:52
217阅读
人笨, 绘制树形图那里的代码看了几次也没看懂(很多莫名其妙的(全局?)变量), 然后就自己想办法写了个import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties
def getTreeDB(mytree):
"""
利用递归获取字典最大深度, 子叶数目
:param m
转载
2023-09-01 07:57:32
87阅读
文章目录1. 决策树概述2. 理论分析2.1 特征选择2.1 1 熵&条件熵2.1.2 信息增益2.1.3 信息增益比2.2 决策树的生成2.2.1 ID3算法2.2.2 C4.5算法2.2.3 决策树的修剪3. python实现3.1 数据集3.2 python代码3.3 运行结果 1. 决策树概述决策树(decision tree)是一种基本的分类与回归方法,在分类问题中,表示基于特
转载
2023-09-05 10:01:02
130阅读
在Python中使用Matplotlib注解绘制树形图本节将学习如何编写代码绘制如下图所示的决策树。1、Matplotlib注解 Matplotlib提供了一个注解工具annotations,非常有用,可以在数据图形上添加文本注释。注解通常用于解释数据的内容。#使用文本注解绘制树节点
import matplotlib.pyplot as plt
#定义文本框和箭头格式
decisionNode
转载
2023-06-16 09:31:26
0阅读
最近布置了个课堂作业,用python实现决策树算法 。整了几天勉勉强强画出了棵歪脖子树,记录一下。大体思路:1.创建决策树My_Decision_Tree类,类函数__init__()初始化参数、fit()进行决策树模型训练、predict()进行预测、evaluate()进行模型评估、save_model()保存模型(csv格式)、load_model()加载模型、show_tree(
转载
2023-06-01 16:43:15
163阅读
继续跟着白皮书学习,对上面的代码做了不少改动,现在能正确绘制了。先不谈决策树的算法,现在仅仅是依据字典表示树来绘制决策树的图形。go.py引导脚本。#!/usr/local/bin/python3.5
import treePlot
myTree0=treePlot.getTstTree(0)
myTree1=treePlot.getTstTree(1)
myTree0['no surfacing
转载
2023-11-22 23:28:37
374阅读
决策树是机器学习的十大算法之一,可用于解决分类和回归问题。决策树的结构很像二叉树,通过一层一层的节点,来对我们的样本进行分类。决策树算法的可解释性非常的好,通过绘制决策树,我们可以很清楚理地解算法的工作原理,同时也方便向别人进行展示。这一节,我们的重点是画决策树,对于决策树算法的原理以及细节,我们不做深入的探讨。我们使用iris数据集,它有150个样本,5个特征。接下来我们就以iris数据集为例,
转载
2024-01-08 16:13:03
78阅读
一、数据,并要先one-hot多分类标签from sklearn.preprocessing import label_binarize
y_test = label_binarize(y_test, classes=[0, 1, 2, 3, 4])
n_classes = y_test.shape[1] # 几分类(我这里是5分类)二、构建模型,注意OVR类的使用(OneVsRestClas
转载
2023-07-31 10:27:47
478阅读
一、简介(1)本章主要使用字典来存储决策树,但字典的可读性太低。后面将用matplotlib将其形象化。优点:计算复杂度不高、输出结果易于理解、对中间值的缺失不敏感、可以处理不相关特征数据缺点:可能会产生过度匹配问题(2)#创建决策树的伪代码函数createBranch()如下:检查数据集中的每个子项是否属于同一个分类if so return 类标签;else 寻找划分数
转载
2023-08-15 23:00:33
191阅读
今天是机器学习专题的第21篇文章,我们一起来看一个新的模型——决策树。决策树的定义决策树是我本人非常喜欢的机器学习模型,非常直观容易理解,并且和数据结构的结合很紧密。我们学习的门槛也很低,相比于那些动辄一堆公式的模型来说,实在是简单得多。其实我们生活当中经常在用决策树,只是我们自己没有发现。决策树的本质就是一堆if-else的组合,举个经典的例子,比如我们去小摊子上买西瓜。水果摊的小贩都是怎么做的
转载
2024-06-26 22:59:54
40阅读
决策树为字典格式,示例如下:{'tearRate': {'reduced': 'no lenses', 'normal': {' astigmatic': {'yes': {' prescript': {'hyper': {'age': {'pre': 'no lenses', 'presbyopic': 'no lenses', 'young': 'hard'}}, 'myope': 'hard
转载
2023-08-29 19:03:45
111阅读
Matplotlib优势:Matlab的语法、python语言、latex的画图质量(还可以使用内嵌的latex引擎绘制的数学公式) 本节课接着上一节课,来可视化决策树,用Matplotlib注解绘制树形图1 Matplotlib 注解Matplotlib提供了一个注解工具:annotations,可以在数据图形上添加文本工具。 Matplotlib实际上是一套面向对象的绘图库,它所绘制的图表
转载
2023-08-15 15:31:24
247阅读
决策树 算法优缺点: 优点:计算复杂度不高,输出结果易于理解,对中间值缺失不敏感,可以处理不相关的特征数据 缺点:可能会产生过度匹配的问题 适用数据类型:数值型和标称型 算法思想: 1.决策树构造的整体思想: 决策树说白了就好像是if-else结构一样,它的结果就是你要生成这个一个可以从根开始不断判断选择到叶子节点的树,但是呢这里的if-else必然不会是让我们认为去设置的,我们要做的是提供一种方
转载
2023-06-28 15:18:00
231阅读
决策树决策树在周志华的西瓜书里面已经介绍的很详细了(西瓜书P73-P79),那也是我看过讲的最清楚的决策树讲解了,我这里就不献丑了,这篇文章主要是分享决策树的代码。在西瓜书中介绍了三种决策树,分别为ID3,C4.5和CART三种决策树,三种树出了分裂的计算方法不一样之外,其余的都一样,大家可以多看看书,如果有什么不清楚的可以看看我的代码,决策树的代码算是很简单的了,我有朋友面试的时候就被要求写决策
转载
2023-08-09 14:44:43
267阅读
决策树(Decision Tree)是一种非参数的有监督学习方法,它能够从一系列有特征和标签的数据中总结出决策规则,并用树状图的结构来呈现这些规则,以解决分类和回归问题。决策树尤其在以数模型为核心的各种集成算法中表现突出。开放平台:Jupyter lab根据菜菜的sklearn课堂实效生成一棵决策树。三行代码解决问题。from sklearn import tree #导入需要的模块
clf =
转载
2023-07-25 14:16:12
178阅读
上一篇讲了ID3决策树原理,现在开始拿一个例子进行实战一、python机器学习库scikit-learn。sklearn是一个Python第三方提供的非常强力的机器学习库,它包含了从数据预处理到训练模型的各个方面。在实战使用scikit-learn中可以极大的节省我们编写代码的时间以及减少我们的代码量,使我们有更多的精力去分析数据分布,调整模型和修改超参。sklearn基本包含了所有机器学习的方式
转载
2024-07-24 08:47:37
27阅读
Python实现一
在这里我们先调用sklearn算法包中的接口,看一下算法的效果。
实验数据(可能你并不陌生~~~):
1.5 50 thin
1.5 60 fat
1.6 40 thin
1.6 60 fat
1.7 60 thin
1.7 80 fat
1.8 60 thin
1.8 90 fat
1.9 70 thin
1.9 80 fa
转载
2024-03-19 00:08:59
26阅读
1. 决策树决策树就像程序的if-else结构,是用于分割数据的一种分类方法。from sklearn.tree import DecisionTreeClassifier对于复杂的预测问题,通过建立树模型产生分支节点,被划分成两个二叉树或多个多叉树较为简单的子集,从结构上划分为不同的子问题。将依规则分割数据集的过程不断递归下去。随着树的深度不断增加,分支节点的子集越来越小,所需要提的问题数也逐渐
转载
2023-08-10 12:20:53
102阅读
python3.x版本下,在用example_dict.keys()或者example_dict.values()取出字典中对应的键值时,取出的值总是会带有前缀。python2.x版本的不存在这个问题,可以直接使用书中的代码以下是python3.x版本代码:def plotTree(myTree, parentPt, nodeTxt):#if the first key tells you wha
转载
2023-07-31 17:48:32
110阅读
机器学习——决策树模型:Python实现1 决策树模型的代码实现1.1 分类决策树模型(DecisionTreeClassifier)1.2 回归决策树模型(DecisionTreeRegressor)2 案例实战:员工离职预测模型搭建2.1 模型搭建2.2 模型预测及评估2.2.1 直接预测是否离职2.2.2 预测不离职&离职概率2.2.3 模型预测及评估2.2.4 特征重要性评估3
转载
2023-06-20 21:24:13
205阅读