# 高光谱数据分析入门
高光谱成像技术是近年来遥感领域的一个重要突破。与传统的图像相比,高光谱图像不仅包含可见光波段的信息,还覆盖了近红外甚至中红外的多个波段。在各个波段上进行的数据采集和分析,可以提取出丰富的物质成分信息,为农业、环境监测、矿产资源勘探等领域提供了强大的数据支持。
本文将介绍如何使用Python进行高光谱数据的分析,同时给出实际的代码示例,让您能够更好地理解高光谱数据分析的过
摘自《基于深度卷积神经网络的高光谱图像分类》徐敏1.Indian Pines 数据集Indian Pines 是最早的用于高光谱图像分类的测试数据,由机载可视红外成像光谱仪(AVIRIS)于 1992 年对美国印第安纳州一块印度松树进行成像,然后截取尺寸为 145×145 的大小进行标注作为高光谱图像分类测试用途。AVIRIS 成像光谱仪成像波长范围为 0.4-2.5μm,是在连续的
转载
2023-10-30 22:29:26
1268阅读
1) ASD光谱仪简介美国ASD公司设计制造的FieldSpec® 系列波谱仪在中国的遥感应用已经相对普及。应用范围已经扩展到包括精准农业、林业、海洋与内陆水体、冰雪、环境污染监控、气象、地质与矿产、地面定标、教学等等领域。所使用的仪器型号包括了FieldSpec HandHeld,FieldSpec VNIR,FieldSpec Dual VNIR,FieldSpec Pro FR,FieldS
转载
2023-12-01 09:46:53
178阅读
光谱分析是一项通过不同波长光吸收量或发射量变化对物理物质进行识别和定性分析的强大技术。光谱分析需要将光分散为彩虹波长,这样的话,可以测量和记录不同波长下光强度的系统光谱。 在一个光谱仪中,TI DLP DMD (数字微镜器件)作为一个可编程波长滤波器。在典型配置中,宽频带光通过狭缝进入,并且一个光栅被用来将通过微镜阵列的光的波长色散。然后,微镜列被用来选择哪些波长被直接照射到单个元素检
1.全色波段(Panchromatic Band) 全色图像是单通道的(即单波段灰色影像),其中全色是指可见光波段0.38~0.76um(即人们熟知的红橙黄绿蓝靛紫),全色图像是这个波段范围的混合图像。因为是单波段,所以在ENVI中显示为灰度图片,无法进行彩色合成。全色遥感图像由于是采集整个可见光范围内的
转载
2023-12-07 16:02:31
17阅读
高光谱遥感:将光谱特征和成像技术相结合,获取具有高光谱分辨率的连续、窄波段的图像数据。 (1)光谱特征和成像技术相结合 高光谱图像在X,Y轴平面表示地物的空间信息,在Z轴上表示地物的光谱信息。(2)什么是连续、窄波段? 从高光谱和多光谱之间的区别可以看出,如下图所示,高光谱的波段数目多,这意味着光谱分辨率更高,多光谱是高光谱的一部分,一般包含2-10个波段。 多光谱的波段不连续,且波段比高光谱宽,
高光谱图像处理学习笔记面试需要,所以来学习一下高光谱图像处理的相关知识 文章目录高光谱图像处理学习笔记一、高光谱图像相关的概述 一、高光谱图像相关的概述1、常见的光谱范围 红外光谱范围一般是780nm ~ 300μm 可见光波段为 380nm ~ 780nm 紫外光谱范围 10nm ~ 380nm 紫外、可见光、近红外和中红外2、高光谱和多光谱之间的区别 多光谱和高光谱之间的主要区别在于波段的数量
转载
2023-11-03 11:33:02
185阅读
高分一号影像处理流程全色图像没有方法进行大气校正,所以一般在定量遥感中不使用全色图像。本流程中只是为了说明所有处理的流程,所以包括了全色图像。 一、多光谱大气校正在ENVI5.2版本中,直接支持高分一号PMS数据的辐射定标和大气校正。(1)选择Open As->CRESDA->GF-1。选择GF1_PMS2_E104.0_N36.0_20140724_L1A000028476
以下内容主要包括四个方面:(1)显示第2到5条光谱反射率和波长的关系(折线图);(2)显示前四条叶绿素值的条形图(3)显示叶绿素与各个波段的相关性折线图(4)计算植被指数NDVI与叶绿素对应的散点图; 数据下载之后你可以选择将这个表格放在MATLAB运行路径下的bin路径下,那么在代码中则可以直接输入名称调用,也可以随便放在某个文件夹下,那么加载数据的时候就需要提供完整路径。%% 数据导
转载
2023-12-02 18:04:34
123阅读
高光谱遥感数据光谱特征的提取与应用 杜培军
遥感基础知识积累:绝对温度大于0的物体在整个光谱轴上具有连续的光谱曲线高光谱可以有效的描述一些窄而重要的局部光谱特征,可以明显看到高光谱对于光谱频带的描述是详细的。
光谱数据库美国JBL的航空可见光/红外成像光谱仪(AVIRIS),AVIRIS在0.2-2.45微米的波长范围内获取224个连续的光谱波段图像,波段宽度不大于10n
转载
2024-07-23 16:35:23
35阅读
Matlab读取高光谱遥感数据1、高光谱遥感数据简介2、两个开源的高光谱遥感数据集3、高光谱遥感数据常用格式3.1 .Mat3.2 .Tif4、Matlab读取高光谱遥感数据4.1 Matlab读取.Mat格式的高光谱遥感数据4.1.1 Matlab代码读取.mat4.1.2 运行结果(整合后):4.2 Matlab读取.tif格式的高光谱遥感数据4.2.1 Matlab代码读取.tif4.2.
转载
2023-10-20 10:30:00
201阅读
本文简单介绍高光谱图像分类相关的特征提取、特征选择、分类方法介绍近年来,高光谱图像分类得到了广泛的研究,然而,高光谱遥感图像特征维度高、波段间相关性强以及光谱混合等特性给高光谱图像分类带来一些困难。目前有机器学习、模式识别、图像处理、深度学习等知识应用于高光谱图像分类。由于高光谱数据的维度高、数据之间存在冗余等特点,经过前人研究表明,对高光谱数据的预处理可以提高分类精度。其中波段选择和波段提取属于
转载
2024-01-26 08:59:19
122阅读
高光谱图像分类一、准备数据二、模型的实现三、创建数据集三、模型训练及测试五、一些备用函数六、对一些问题的思考七、心得体会 这次和上次情况差不多,写这篇文章的本意也是因为老师布置的作业。按要求,阅读论文《HybridSN: Exploring 3-D–2-DCNN Feature Hierarchy for Hyperspectral Image Classification》,并对里面的模型(
转载
2023-12-02 13:58:12
300阅读
1.函数multibandread读取读取多波段二进制影像文件(ENVI主菜单file—save file as—envi standard得到的就是二进制影像文件,有时甚至会看到后缀名为bsq、bil、bip等影像)。 im_hyper = multibandread(filename, size, precision, offset, interleave, byteor
转载
2023-06-16 08:32:37
185阅读
1.摘要HSI----高光谱图像(Hyperspectral Image)。所捕获的光谱信息以及对应高光谱数据对象之间的非线性关系,使得传统方法无法进行准确的分类。深度学习方法作为一个强有力的特征提取器,被用在高光谱图像分类任务上。1.概括传统机器学习方法用于HSIC上面的不足,然后了解深度学习方法解决这些问题的优势。2.将目前最新的深度学习框架划分为:光谱特征、空间特征和空间光谱特征。3.如何高
转载
2023-10-12 16:35:24
297阅读
从上篇加载的数据开始,在层列表勾选该层。选择菜单命令 高光谱->复制波段数据 。点击后出现下述对话框。图1 选择波段图1左侧列出了所有通道的数据,打勾表示已经选中。点击OK可以将所有选中的通道复制成一个新层,选中所有通道就相当于复制了一个与当前层完全一样的副本。当然有时候我们不需要复制一个完全相同的层。1. 勾选/保存勾选结果勾选需要复制的通道很简单,但是300多个通道每次挑一遍也很费劲。挑
转载
2023-08-07 13:59:28
357阅读
高光谱遥感影像数据集高光谱遥感是将成像技术和光谱技术相结合的多维信息获取技术,可以同时获取目标的二维空间信息与第三维的光谱信息,得到高光谱分辨率的连续、窄波段图像数据。高光谱图像与高分辨率图像、多光谱图像相比的优势在于,它的光谱分辨率高,波段众多,能够获取地物几乎连续的光谱特征曲线,并可以根据需要选择或提取特定波段来突出目标特征;定量化的连续光谱曲线数据为地物光谱机理模型引入图像分类提供了条件;它
转载
2023-09-05 12:46:59
78阅读
基于Python的高光谱图像显示高光谱数据:
用到的库:matplotlib 2.23、scipy 1.10、spectral 0.21主要内容:图像显示、类别显示、图像立方体显示、N维特征显示欢迎有兴趣的朋友交流指点。最后,废话不多说直接上代码?import matplotlib.pyplot as plt
from scipy.io import loadmat
import spectral
转载
2023-10-27 13:04:33
452阅读
光谱和图像是人们观察世界的两种方式,高光谱遥感通过“图谱合一”的技术创新将两者结合起来,大大提高了人们对客观世界的认知能力,本来在宽波段遥感中不可探测的物质,在高光谱遥感中能被探测。以高光谱遥感为核心,构建大范围、快速、远程、定量探测技术,已在矿物填图、土壤质量参数评估、植被、农作物生长状态监测等领域取得了突出的成果,而在药品、食物、环境等领域也显示了不可估量的应用潜力。高光谱技术可以在不同空间尺
高分五号卫星(GF-5卫星)于2018年5月9日发射成功,是世界首颗实现对大气和陆地综合观测的全谱段高光谱卫星,填补了国产卫星无法有效探测区域大气污染气体的空白,可满足环境综合监测等方面的迫切需求,是中国实现高光谱分辨率对地观测能力的重要标志。卫星首次搭载了可见短波红外高光谱相机(Advanced HyperSpectral Imager, AHSI)、全谱段光谱成像仪(Visual and In