前言作者:python使用宝典准备工作开始之前,你要确保Python和pip已经成功安装在电脑上,如果没有Windows环境下打开Cmd(开始—运行—CMD),苹果系统环境下请打开Terminal(command+空格输入Terminal),准备开始输入命令安装依赖。pip install pydub
pip install librosa看到 Successfully installed xxx
转载
2023-08-06 20:14:19
941阅读
FFT频谱分析原理采样定理:采样频率要大于信号频率的两倍。N个采样点经过FFT变换后得到N个点的以复数形式记录的FFT结果。假设采样频率为Fs,采样点数为N。那么FFT运算的结果就是N个复数(或N个点),每一个复数就对应着一个频率值以及该频率信号的幅值和相位。第一个点对应的频率为0Hz(即直流分量),最后一个点N的下一个点对应采样频率Fs。其中任意一个采样点n所代表的信号频率:Fn=(n-1)*F
转载
2024-01-29 03:17:50
0阅读
当分析机械故障类型、故障位置以及故障严重程度时,就需要对滚动轴承的振动信号进行频谱分析,即根据频谱图中的频率成分以及各有关频率成分的幅值大小对滚动轴承进行进一步地诊断。 所谓频域分析,即是把以时间为横坐标的时域信号通过傅里叶变换转为以频率为横坐标的频域信号,从而求得关于原时域信号频率成分的幅值和相位信息的一种分析方法。其数学运算式为 式中 x(t)————时域信号(振动加速度、速度
转载
2023-10-01 15:56:12
767阅读
本篇尝试使用Python对音频文件进行频谱分析。在语音识别领域对音频文件进行频谱分析是一项基本的数据处理过程,同时也为后续的特征分析准备数据。 直接上Python代码:import wave
import pyaudio
import numpy
import pylab
#打开WAV文档,文件路径根据需要做修改
wf = wave.open("D:\\Python\\wavs\\Do-pia
转载
2023-07-08 23:48:57
436阅读
博客作者:凌逆战音频时域波形具有以下特征:音调,响度,质量。我们在进行数据增强时,最好只做一些小改动,使得增强数据和源数据存在较小差异即可,切记不能改变原有数据的结构,不然将产生“脏数据”,通过对音频数据进行数据增强,能有助于我们的模型避免过度拟合并变得更加通用。我发现对声波的以下改变是有用的:Noise addition(增加噪音)、增加混响、Time shifting(时移)、Pitch sh
转载
2023-08-07 21:27:24
227阅读
# 1 图像二维频谱长什么样子(左图是原图,右图是对应的频谱图) (图片来源:第一组是来自matlab自带的图片 “cameraman.tif”;第二组是用 excel 画的,然后截图) # 2 怎么获得(matlab和C++调用)matlaba代码,保存为 spectrum2D.m function [Result] = spectrum2D(I)
% I
转载
2023-09-29 22:16:43
434阅读
FFT 是离散傅立叶变换的快速算法,可以将一个信号变换 到频域。有些信号在时域上是很难看出什么特征的,但是如 果变换到频域之后,就很容易看出特征了。这就是很多信号 分析采用 FFT 变换的原因。另外,FFT 可以将一个信号的频谱 提取出来,这在频谱分析方面也是经常用的。 虽然很多人都知道 FFT 是什么,可以用来做什么,怎么去 做,但是却不知道 FFT 之后的结果是什意思、如何决定要使
转载
2023-07-20 23:08:45
155阅读
文章目录系列文章目录一、实验目的二、实验原理三、实验步骤及内容四、实验代码及图像结果 一、实验目的 进一步加深DFT算法原理和基本性质的理解(因为FFT只是DFT的一种快速算法,所以FFT的运算结果必然满足DFT的性质)熟悉FFT算法原理及子程序的应用。掌握用FFT对连续信号和时域离散信号进行频谱分析的基本方法。了解可能出现的分析误差和原因,以便在实际中正确应用FFT。二、实验原理 如果
转载
2023-11-26 08:46:30
746阅读
一、概述1.语音信号是一种随时间而变化的信号,主要分为浊音和清音两大类。浊音的基音周期、清浊音信号幅度和声道参数等都随时间而缓慢变化。由于发声器官的惯性运动,可以认为在一小段时间里(一般为10~30ms)语音信号近似不变,即语音信号具有短时平稳性。这样,可以把语音信号分为一些短段(称为分析帧)来进行处理。 2.语音信号分析可以分成时域分析和变换域(频域、倒谱域)分析。其中时域分析方法是最简单、最直
转载
2023-11-30 08:59:38
319阅读
频域分析和时频分析是信号处理中两种不同的分析方法,用于研究信号在频域和时频域上的特性。频域分析:频域分析是通过对信号进行傅里叶变换或其他频域变换来研究信号在频率域上的性质。常见的频域分析方法包括:傅里叶变换: 将信号从时域转换到频域,得到信号的频谱信息。快速傅里叶变换(FFT): 是一种用于高效计算傅里叶变换的算法,广泛用于数字信号处理。功率谱密度(PSD)估计: 衡量信号在不同频率上的功率分布。
现代实时频谱分析仪现代实时频谱分析仪可以采集分析仪输入频率范围内任何地方的传输频带或频宽。这一功能的核心是RF 下变频器,后面跟有一个宽带中间频率(IF)段。ADC数字化IF信号,系统以数字方式执行所有进一步的步骤。DSP算法执行所有信号调节和分析功能。可以通过几个关键特点区分实时结构是否成功: 1)RF 信号调节,提供宽带宽 IF 路径和高动态范围。 2)使用带通滤波器,而不是 YIG 预选滤波
转载
2024-10-17 19:36:48
70阅读
前言一个使用matlab对音频信号进行频谱分析及滤波处理的学习笔记,本文使用的是椭圆滤波器。音频下载 demo.mp3频谱分析读取音频信号进行傅里叶变换[x,fs]=audioread('D:\demo.mp3'); % 读取文件中的数据,并返回样本数据x以及该数据的采样率fs。
x=x(:,1); % 从x这个矩阵中取出第一列
FS=length(x); % x的长度
Y=fft(x);
前言最近在看信噪比方面的知识,看了不少文章和几篇论文,发现对信噪比的理解和公式不尽相同,下面根据自己理解做一下总结。 在通信系统的接收端,噪声会随着信号一起进入接收机,这时就会判断在信噪比为多少的情况下误码率是多少,这时SNR、Eb/N0、Es/N0都可能用到。SNR 也即信噪比,是接收端模拟信号的重要测量指标,可以通过频谱仪等仪器实际测量接收端的模拟信号得到。而Eb/N0 是指通信系统传输一比特
# Python振动频谱分析教程
## 引言
振动频谱分析是通过对振动信号的频率成分进行分析,来判定设备健康状态的一种重要手段。在这篇文章中,我们将一步一步地学习如何使用Python完成振动频谱分析。无论你是刚入行的小白还是经验丰富的开发者,这篇文章都将帮助你理解振动频谱分析的流程和实现方法。
## 流程概述
在进行振动频谱分析的过程中,我们可以将整个过程划分为以下几个关键步骤。为了方便理
# Python 频谱分析 FFT 教程
频谱分析是信号处理中的一项关键技术,而快速傅里叶变换(FFT)则是一种高效的计算信号频谱的算法。对于刚入行的小白,理解和实现这一过程可能有点复杂。本文将通过流程的讲解和代码示例,帮助你实现 Python 中的频谱分析。
## 频谱分析的整体流程
以下是频谱分析的基本步骤:
| 步骤 | 描述 |
原创
2024-09-18 03:30:27
210阅读
这里来总结一些NetworkX的最基本使用方法。首先,NetworkX安装后,其源码的位置在:%Python安装目录%\Lib\site-packages\networkx-1.7-py2.7.egg\networkx下,可以阅读其源码了解实现细节。作为初学者,甚至有些朋友之前都没接触过Python,那么入门的NetworkX使用方法就是使用其进行一些最简单的复杂网络分析,这里以有向网络为例,来总
FFT_频谱分析(数字信号处理)(一)实验原理用FFT对信号作频谱分析是学习数字信号处理的重要内容。经常需
转载
2023-07-30 13:39:50
1290阅读
倒谱分析可检测频谱中的重复模式,使其对区分多个故障非常有用,该故障在不同的主要频谱(即FFT、阶次、包络和增强频谱)中很难看到。 最重要的行业应用与机械诊断相关,如齿轮箱分析,以及其他应用,如: 1 回声检测和去除 2 以及语音分析 1 机器诊断--监测齿轮箱和滚动轴承振动 2 齿轮箱测试--早期检测
基于matlab的fft频谱分析及应用实验报告 实验三用FFT对信号进行频谱分析 一实验目的 1能够熟练掌握快速离散傅立叶变换的原理及应用FFT进行频谱分析的基本方法;2了解用FFT进行频谱分析可能出现的分析误差及其原因; 二实验原理 1.用DFT对非周期序列进行谱分析 单位圆上的Z变换就是序列的傅里叶变换,即 X(ej?)?X(z)z?ej? X(ej?)是?的连续周期函数。对序列x(n)进行N
转载
2023-11-10 13:25:07
149阅读
采样定理:采样频率要大于信号频率的两倍。 N个采样点经过FFT变换后得到N个点的以复数形式记录的FFT结果。假设采样频率为Fs,采样点数为N。那么FFT运算的结果就是N个复数(或N个点),每一个复数就对应着一个频率值以及该频率信号的幅值和相位。第一个点对应的频率为0Hz(即直流分量),最后一个点N的下一个点对应采样频率Fs。其中任意一个采样点n所代表的信号频率:Fn=(n-1)*Fs/N。
转载
2023-07-30 13:39:18
181阅读
1评论