# Python分类算法实例
## 引言
在机器学习中,分类算法是一种常用的技术,用于将数据集中的样本划分为不同的类别。这些算法可以应用于各种领域,如文本分类、图像识别、垃圾邮件过滤等。Python作为一种强大的编程语言,提供了许多用于实现分类算法的库和工具。在本文中,我们将通过一个具体的实例来介绍几种常用的Python分类算法。
## 实例背景
我们假设有一个电子商务网站,需要根据用户的
原创
2023-08-10 19:02:31
106阅读
目录一、KNN介绍K-近邻(K-Nearest Neighboor)算法定义理解K近邻总结KNN⼯作流程二、案例实现 作为机器学习中最基础的算法,KNN在简单分类问题上有其独特的优势,其理念类似于中国的成语“近朱者赤,近墨者黑”,这种将特征数字转化为空间距离判断的方法也是我们认识机器学习世界的第一步。一、KNN介绍K-近邻(K-Nearest Neighboor)算法定义如果⼀个样本在特征空间中
转载
2024-03-21 22:36:52
78阅读
今晚本来良心发现,连改了5、6个积累已久的潜在BUG以及需要效率优化的代码,改完已经8点了,才发现说好的机器学习笔记没写。不过还好是KNN,很友好很简单,松了一口气,大家就当休息一下换换脑子吧。 KNN算法的定义: KNN通过测量不同样本的特征值之间的距离进行分类。它的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属
转载
2024-03-06 16:15:13
205阅读
文章目录算法介绍算法原理算法示例总结 算法介绍贝叶斯方法 贝叶斯方法是以贝叶斯原理为基础,使用概率统计的知识对样本数据集进行分类。由于其有着坚实的数学基础,叶斯分类算法的误判率是很低的。贝叶斯方法的特点是结合先验概率和后验概率,即避免了只使用先验概率的主管偏见,也避免了单独使用样本信息的过拟合现象。贝叶斯分类算法在数据集较大的情况下表现出较高的准确率,同时算法本身也比较简单。 [2] 朴素贝叶斯
转载
2023-12-19 10:50:25
50阅读
常见DP类型第一节:线性DP思想:DP是作用在线性空间上的递推——DP的阶段按照各个维度线性的增长,从一个或多个边界点开始有方向的向整个状态空间转移扩展,最后在每个状态上保留的以自身为目标问题的最优解简单的说,DP是不断划分自己的子问题(满足能从小问题推出大问题的答案),从最小的子问题开始一步步逼近目标点得到答案DP实现的方式:1.正序计算,这里适用于最小的子问题可以直接得到解,且终态是一个确定的
转载
2023-06-30 21:23:34
152阅读
简介KNN算法,即K近邻算法是一种监督学习算法,本质上是要在给定的训练样本中找到与某一个测试样本A最近的K个实例,然后统计k个实例中所属类别计数最多的那个类,就是A的类别。 从上面一句话中可以看出,KNN的原理非常简单粗暴,而且是一种“在线”的学习方式,即每一次分类都需要遍历所有的训练样本,此外KNN算法还有几个要素:K,距离,分类决策规则。要素对于KNN而言有三个要素: 1.
转载
2024-06-28 19:37:58
18阅读
参考:参考了多篇文章进行EM算法的学习,这篇文章还是非常简单易懂的。推荐给大家。 第一次接触EM算法,是在完成半隐马尔科夫算法大作业时。我先在网上下载了两份Baum-Welch算法的代码,通过复制粘贴,修修补补,用java实现了HMM算法(应用是韦小宝掷两种骰子的问题)。然后,参考有关半隐马尔科夫算法的论文,照着论文中的公式修改隐马尔
转载
2024-03-28 13:58:51
77阅读
[转帖]数据挖掘聚类算法一览聚类分析是数据挖掘中的一个很活跃的研究领域,并提出了许多聚类算法。这些算法可以被分为划分方法、层次方法、基于密度方法、基于网格方法和基于模型方法。1 划分方法(PAM:PArtitioning method) 首先创建k个划分,k为要创建的划分个数;然后利用一个循环定位技术通过将对象从一个划分移到另一个划分来帮助改善划分质量。典型的划分方法包括:k
转载
2024-01-12 09:31:19
89阅读
决策结构要求程序员指定一个或多个条件进行评估计算,或由程序进行测试,以及一条或多条语句将被执行,如果条件被确定为真实的;如果条件被确定为假可选的其他语句执行。以下是在大多数编程语言中的一个典型的决策结构的一般形式为:Python编程语言的假定任何非零和非null为true,如果是零或null,则假定为false值。Python编程语言提供了以下几种类型的决策语句。查看其详细信息。语句描述if 语句
转载
2023-11-26 13:52:54
47阅读
本文介绍机器学习中入门的KNN(K-Nearest Neighbors )分类算法。
参考:https://scikit-learn.org.cn/view/695.htmlhttps://zhuanlan.zhihu.com/p/38430467https://zhuanlan.zhihu.com/p/53084915https://zhuanlan.zhihu.com/p/23191325一:
转载
2023-11-30 19:46:48
70阅读
K邻近算法(KNN)一、算法思想二、KNN类KNeighborsClassifier的使用三、KNN分析红酒类型3.1红酒数据集3.2红酒数据的读取3.3将红酒的数据集拆分为训练和测试集3.4KNN算法分析总结 一、算法思想KNN分类算法是最近邻算法,字面意思就是寻找最近邻居,由Cover和Hart在1968年提出,它简单直观易于实现。下面通过一个经典例子来讲解如何寻找邻居,选取多少个邻居。图中
转载
2024-05-04 19:18:21
76阅读
1. 从案例中说起一个有关电影分类的例子:这是一个根据打斗次数和接吻次数作为特征来进行类型的分类。最后一条的记录就是待分类的数据。KNN这个分类过程比较简单的一个原因是它不需要创建模型,也不需要进行训练,并且非常容易理解。把例子中打斗次数和接吻次数看成是x轴和y轴,那么就很容易建立一个二维坐标,每条记录都是坐标中的点。对于未知点来说,寻找其最近的几个点,哪种分类数较多,未知点就属于哪一类。2. 算
转载
2024-06-13 05:41:41
62阅读
1.算法概要k-NearestNeighbor分类算法,顾名思义,找到K个与待测数据最近的样本数据,根据K个样本类别情况来判断待测数据的类别。为什么可以这样?相近的物体往往具有一些共性,例如,在学校里一般成绩比较好的学生都喜欢坐在一起,而有些成绩较差的往往也喜欢玩到一块去。KNN算法有三个步骤: 1.算距离:计算待测数据到每个样本数据的距离 2.找邻居:选出K个距离最近的样本数据 3.做分类:在前
转载
2024-04-17 11:39:37
53阅读
#!/usr/bin/python
# -*- coding: UTF-8 -*-
#author:Jiang Yaju
from numpy import *
import operator
from os import listdir
def createDataSet():
group=array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
l
转载
2024-07-05 11:14:36
81阅读
1、选择排序选择排序是一种简单直观的排序算法。它的原理是这样:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的后面,以此类推,直到所有元素均排序完毕。算法实现如下:#找到最小的元素def FindSmall(list):
min=list[0] for i in range(len(list)): i
转载
2023-08-10 07:02:42
66阅读
前言:出自于学校课程数据挖掘与分析布置的实验小作业,案例经典,代码注释较全,供大家参考。题目:现有西瓜挑选数据文件:dataset.txt,编程实现朴素贝叶斯算法,并判断有如下特征的瓜是否好瓜:
青绿,稍蜷,浊响,清晰,凹陷,硬滑。实验数据如下: 要求:1、自行采用一种语言编程实现算法(注意:计算条件概率、判别分类等核心算法需自己编程实现)
2、用课堂例子进行正确性检验
3、用户界面友好,要
转载
2023-08-10 07:02:32
100阅读
聚类分析是数据挖掘中的一个很活跃的研究领域,并提出了许多聚类算法。 这些算法可以被分为划分方法、层次方法、基于密度方法、基于网格方法和基于模型方法。 1. 划分方法(PAM:PArtitioning method) : 首先创建k个划分,k为要创建的划分个数;然后利用一个循环定位技术通过将对象从一个划
转载
2024-01-12 12:54:21
36阅读
文章目录一、电影类别分类1.准备电影数据1.1numpy创建数据集2,处理分类问题2.1分类代码二、约会网站配对效果判定1. 收集数据2. 准备数据2.1 从文本文件中解析数据2.2 可视化数据2.3 归一化数据2.4 测试算法:验证分类器2.5 使用算法:构建完整可用系统三、手写数字识别1. 收集数据2. 准备数据:将图像转换为测试向量3. 分析数据总结 一、电影类别分类 k-近邻算法是一种
转载
2023-10-12 23:24:30
208阅读
01数据分类正所谓物以类聚人与群分,生活里很多东西都存在着分类,当你进入超市的时候有着“日常生活用品”,“零食区”,“衣服类”等等的分类,一个分类里有不同的商品。02分类方法那么问题来了,怎么分类呢?按照什么分类呢?我们仍然用超市的分类来说明,在超市的分类中,我们可以看到在同一个类中的商品用途是差不多的。也有的分类是按照商品的性质来分的。如果是按照商品的用途这一单一的规则来分类的话,我们通常叫这种
转载
2023-08-16 14:18:48
73阅读
1 内置函数Python3解释器中内置了69个常用函数,属于底层的函数,它们到处可用。有些对大家来说比较熟悉,比如abs(), max(), sum()… 也有一些比较陌生,比如locals(), all(), compile(), getattr()… 今天按照类别扼要总结。'''
更多Python学习资料以及源码教程资料,可以在群1136201545免费获取
'''2 类型相关69个内置函数中