图形用户界面GUI是图形用户界面的缩写,Python默认GUI开发模块是tkinter,是基于Tk,Tk是一个工具包,提供了跨平台GUI控件。但Tk并不是最新最好选择,也没有功能特别强大GUI控件,事实上,开发GUI应用并不是Python最擅长工作,如果真的需要使用Python开发GUI应用,wxPython、PyQt、PyGTK等模块都是不错选择。基本上使用tkinter来开发GU
转载 2023-10-08 08:48:23
154阅读
在数据分析和统计学中,Python是一种极其流行编程语言,尤其是在计算与T分布相关t值时。这一计算过程在许多应用场景中不可或缺,特别是在假设检验和估计中。在本文中,我们将走过这一计算过程,探讨背景、演进以及架构设计等方面,并提供相应可视化图表。 ### 背景定位 在统计学中,t分布是一种常用概率分布,其用途主要是用于小样本情况下均值比较。许多科学研究、市场分析和其他领域都依赖于这种方
原创 6月前
20阅读
iptables 介绍iptable过滤流程命令格式 iptables [-t table] command [chain] [match][target]table filter: 默认表,处理包过滤表。没有-t就指filter表 nat: 处理网络地址转换表(network address translation) mangle:可以修改包信息,如ttl,tos raw:高级
当前GaussDBT支持一主多备部署和一主多备多级联备部署。其中备机和级联备机个数之和最多支持9个。本文为一主一备环境。GaussDBT中Primary角色是主备关系中主节点,即业务直接处理节点。它负责与备机通信,向备机同步日志。Standby角色是主备关系中备节点,为只读状态。它主要用于接收主机日志,对主机业务日志进行回放,在主机出现异常或者异常退出情况下可切换成主机保证业务正常进行
原创 2020-03-13 12:28:51
1964阅读
t检验分为独立样本t检验、配对样本t检验与单样本t检验,除单样本t检验以外,均是研究X对Y差异情况分析方法,这里X必须是分类数据,Y必须是定量数据。 独立样本t检验和单因素方差分析在功能上基本一致,但是独立样本t检验只能比较两个选项(如男性和女性)差异情况。如果想比较不同专业(如市场营销、心理学、教育学和管理学共4个专业)差异情况,则只能使用单因素方差分析。相较而言,独立样本
前言关于t分布背后故事,可以参考这篇文章,讲非常好。这篇文章归纳知识点如下:why t-test ?自由度单尾t检验 & 双尾t检验影响t统计量单样本t检验单样本t检验栗子(地雀)相依样本相依样本例子总结 效应量why t-test在前面的课程中,我们知道总体参数μ和σ,但很多时候我们并不知道。我们通常只有样本,只能通过样本得出所有结论。在下两节课中,我们将通过样本得出样本均值与总
最近看到一些人问 NSX-T 支不支持混杂模式,于是写这篇文章来做一说明。本文内容可以概况为:NSX-T 不支持混杂模式,但可以满足混杂模式常见两种使用场景:即流量监控和虚拟化嵌套。关于混杂模式混杂模式在 vSphere 环境下是个很常用特性,无论是标准虚拟交换机还是分布式虚拟交换机均支持。“下图为标准虚拟交换机端口组配置截图”“下图为分布式虚拟交换机端口组配置截图”事实上,混杂模式并不是
原创 2022-07-17 12:51:29
1748阅读
原理:T检验是用t分布理论来推论差异发生概率,从而比较两个平均数32313133353236313431303231363533e59b9ee7ad9431333431353937差异是否显著。它与f检验、卡方检验并列。意义:T检验对数据正态性有一定耐受能力。如果数据只是稍微偏离正态,结果仍然是稳定。如果数据偏离正态很远,则需要考虑数据转换或采用非参数方法分析。两个独立样本T检验原假设
python中反斜杠 \ 功能是转义,例如:\n表示换行,\t 表示水平制表符,也就是tab键。在windows中 反斜杠 \ 也用来表示路径分隔符。在Windows环境中,如果我们需要用python读取文件路径时候就会出现问题了 解决方案:# 这里提供两种方式 # 采用双斜杠方式 path = "C:\\Users\\Administrator\\PycharmProject
转载 2023-06-24 23:35:26
1216阅读
# Java工厂模式获取返回T实现指南 ## 一、工厂模式简介 工厂模式是一种创建对象设计模式,允许我们通过一个专门工厂类来创建对象,而不直接使用 `new` 操作符。这种模式使得代码更具可读性、更易于维护和扩展。工厂模式主要有三种形式:简单工厂模式、工厂方法模式和抽象工厂模式。 本文将重点讨论如何使用工厂方法模式获取返回类型为 `T` 对象。 ## 二、实现步骤 我们可以将实现
原创 2024-09-10 06:16:56
38阅读
T470 BIOS硬盘模式是联想T470笔记本一种特定硬盘模式设置,用户常常会遇到由于BIOS配置不当造成无法识别硬盘或者无法正确启动系统等问题。本文将从各个方面为大家提供解决此类问题详尽指南,涉及版本对比、迁移指南、兼容性处理、实战案例、排错指南和生态扩展。 ## 版本对比 首先,我们需要了解T470支持BIOS版本及其硬盘模式兼容性分析。 以下是不同版本对比: | BIOS版
原创 6月前
134阅读
调用scipy包stats统计模块,可以直接得出不同分布分为点值,相对于,查表,或使用excel,使用起来会更加便捷下面是需要用到函数和代码,使用简单方便。ppf单侧左分位点isf单侧右分位点interval双侧双侧分位点正态分布from scipy import stats #显著性水平 a = 0.05 # 单测 左分位点 norm_a_left = stats.norm.ppf(
转载 2023-06-09 22:21:04
725阅读
# Python T 分布及 T 值计算 在统计学中,T 分布是一种重要概率分布,通常用于处理样本量较小且总体标准差未知情况。在很多实际应用中,比如小样本假设检验,T 分布扮演着重要角色。本文将介绍 T 分布基本概念,并通过 Python 代码进行实际计算。同时,我们还将创建相关关系图和状态图,以帮助理解这一区域概念。 ## 什么是 T 分布? T 分布, 有时也称为学生
原创 2024-10-05 04:43:49
64阅读
# Python数据可视化技术 数据可视化是将数据以图形形式展示出来,使得数据更加直观易懂过程。Python 作为一种流行编程语言,拥有丰富数据可视化工具和库,使得数据科学家和分析师能够轻松地创建各种类型图表,包括饼状图、柱状图、折线图等等。本文将重点介绍如何使用 Python某些工具和库来创建饼状图。 ## Matplotlib Matplotlib 是 Python
原创 2024-04-23 05:53:03
46阅读
Introduction        IronPython 作为 Python 语言在.net平台上实现([url]www.python.org[/url]),它是一种动态 语言且支持许多编程范例[paradigms] ,诸如面向对象,也允许您使用.net代码进行编译。  &nbsp
5.元组,文件-python3基础知识元组tuple创建方法文件 元组tuple元组是任意对象有序集合,通过偏移量存取,是不可变对象。创建t=(1,)一个元素一定要加逗号,否则认为()是运算符号 t=(1,2,3,4) t=1,2,3,4 t=tuple(iterator)方法基本与列表相似t[i]索引 t[i][j]嵌套索引 t[i:j]切片 t1+t2拼接 t1*3重复 t.index()
转载 2023-10-07 15:18:48
157阅读
#!/usr/bin/env python3 # -*- coding: utf-8 -*- '''Python 字符串操作 string替换、删除、截取、复制、连接、比较、查找、包含、大小写转换、分割等 ''' if __name__ == '__main__': s = ' s dfg hjk,大 家好,。:?-_+0 ' #去两边空格及指定符号 print(s.
转载 2024-07-22 15:41:34
5阅读
接上参考文档: https://zhuanlan.zhihu.com/p/110207817https://docs.scipy.org/doc/scipy-1.0.0/reference/generated/scipy.stats.f.html目录   t 分布    F分布    例子一 t 分布   
转载 2023-09-12 10:54:04
153阅读
AB实验:1. 人均类->t检验# 计算t值 def get_t(x): # 遍历看x需要几次显著性检验。可能有多个实验组,需要一对一检验 x1 = x[x.分组.astype('str')=='1'].iloc[0] # 对照组,组号固定为1,转为Series格式 for i in x[x.分组.astype('str')!='1'].分组: x2
用z分布及t分布求置信区间: 1、当整体标准差已知时候,就不需要用样本标准差去估计总体标准差了。所以都用z检验。2、当总体标准差未知,需要估计,用t检验。当n>>30,z检验和t检验结果相近,以t检验为准。但是z检验比较好计算,就在大样本时替代t。数据准备:import os HOUSING_PATH = os.path.join("datasets", "housing") im
  • 1
  • 2
  • 3
  • 4
  • 5