一、实验目标1、使用 K-means 模型进行聚类,尝试使用不同的类别个数 K,并分析聚类结果。    2、按照 8:2 的比例随机将数据划分为训练集和测试集,至少尝试 3 个不同的 K 值,并画出不同 K 下 的聚类结果,及不同模型在训练集和测试集上的损失。对结果进行讨论,发现能解释数据的最好的 K 值。二、算法原理首先确定k,随机选择k个初始点之后所有点根据距离质点的距离进行聚类分析,离某一个
1 基础算法 (1) K-means算法:对于给定的样本集,按照样本之间的距离大小,将样本集划分为K个簇。让簇内的点尽量紧密的连在一起,而让簇间的距离尽量的大。 (2) K-means算法是局部最优解,初始聚类中心一般是随机选择,有可能运行两次的结果稍有不同。 (3) 距离公式常采用欧式距离和余弦相似度公式,前者越小代表距离越小,后者越大代表越相似。2 算法实现import numpy as np
转载 2023-06-21 21:47:55
384阅读
SLS机器学习最佳实战:时序异常检测和报警前言第一篇文章SLS机器学习介绍(01):时序统计建模上周更新完,一下子炸出了很多潜伏的业内高手,忽的发现集团内部各个业务线都针对时序分析存在一定的需求。大家私信问我业务线上的具体方法,在此针对遇到的通用问题予以陈述(权且抛砖引玉,希望各位大牛提供更好的建议和方法):数据的高频抖动如何处理?在业务需求能满足的条件下,进可能的对数据做聚合操作,用窗口策略消除
一、导入库 import plotly as py from sklearn.cluster import KMeans import warnings import os warnings.filterwarnings("ignore") py.offline.init_notebook_mode(connected = True) # for basic mathematics operati
# nc数据python聚类分析 ## 引言 在数据分析和机器学习领域,聚类是一种常用的技术,用于将数据集中的样本按照相似性进行分组。聚类分析可以帮助我们发现数据集中的潜在模式和结构,从而更好地理解数据。在本文中,我们将介绍如何使用Python进行聚类分析,并以nc数据为例进行实际操作。 ## 聚类分析概述 聚类分析是一种无监督学习的方法,不需要预先标记的训练数据。它通过计算样本之间的相似性,
原创 2024-02-02 11:22:44
87阅读
编程本身是跟年龄无关的一件事,不论你现在是十四五岁,还是四五十岁,如果你热爱它,并且愿意持续投入其中,必定会有所收获。本文就来自编程教室一位“小”读者的投稿(互助学习1群里的同学应该对作者的名字很熟悉吧)。我看着他不停地产出新的代码和技术文章,不禁感叹“后生可畏”。这是一个爬虫基础分析和操作的开发案例,在此分享给大家。当我在电脑上需要翻译一个单词时,我会这样做:打开浏览器 => 打开百度翻译
转载 8月前
42阅读
聚类分析是指将数据对象的集合分组为由类似的对象组成的多个类的分析过程。基本概念聚类(Clustering)就是一种寻找数据之间内在结构的技术。聚类把全体数据实例组织成一些相似组,而这些相似组被称作簇。处于相同簇中的数据实例彼此相同,处于不同簇中的实例彼此不同。聚类技术通常又被称为无监督学习,与监督学习不同的是,在簇中那些表示数据类别的分类或者分组信息是没有的。数据之间的相似性是通过定义一个距离或者
# 使用 Python 进行数据模糊聚类分析的入门指南 在现代数据科学中,聚类分析是一种常用的无监督学习方法,它能够将相似的对象分组。模糊聚类是聚类分析的一种变种,它允许数据点属于多个聚类,而不仅仅是一个。本文将带领你学习如何使用 Python 进行数据模糊聚类分析。 ## 流程概述 在进行模糊聚类分析之前,我们需要遵循一个系统的流程。下面是实现流程的概述: | 步骤 | 描
原创 7月前
56阅读
数据挖掘测试实例用户收视习惯聚类分析     用户收视习惯在不同的小时段,不同的星期,会呈现不一样的特色,我们现在要做的就是将用户IPTV数据按照每小时收视时长进行聚类分析测试样本:2013年6月6日(星期四,非假日)南京地区当天观看过IPTV的用户用户数:269745  人数据准备:1.创建临时表select s_userid,s_hour,s_
原创 2015-05-19 15:03:24
1051阅读
(2017-04-17 银河统计)聚类分析又称群分析,它是研究(样品或指标)分类问题的一种多元统计方法,也是数据挖掘技术的基本方法。所谓类,通俗地说,就是指相似元素的集合。聚类分析起源于分类学,在考古的分类学中,人们主要依靠经验和专业知识来实现分类。随着生产技术和科学的发展,人类的认识不断加深,分类越来越细,要求也越来越高,有时光凭经验和专业知识是不能进行确切分类的,往往需要定性和定量分析结合起来
聚类分析数据聚类理论理论一、聚类定义二、聚类与分类区别三、聚类分析的目的四、聚类主要方法 数据聚类理论理论一、聚类定义数据聚类 ( Cluster analysis )是指根据数据的内在性质将数据分成一些聚合类,每一聚合类中的元素尽可能具有相同的特性,不同聚合类之间的特性差别尽可能大。聚类分析是研究“物以类聚”的一种科学有效的方法,由实验测试得到的数据是原始数据,原始数据是没有进行分类的、无规律
聚类分析是一个迭代的过程对于n个p维数据,我们最开始将他们分为n组每次迭代将距离最近的两组合并成一组若给出需要聚成k类,则迭代到k类是,停止 计算初始情况的距离矩阵一般用马氏距离或欧式距离个人认为考试只考 1,2比较有用的方法是3,4,5,8 最喜欢第8种 距离的计算  欧式距离    距离的二范数  马氏距离    对于X1, X2  均属于N(u, Σ)
转载 2023-10-12 16:02:46
208阅读
判别与聚类的比较:聚类分析和判别分析有相似的作用,都是起到分类的作用。判别分析是已知分类然后总结出判别规则,是一种有指导的学习;聚类分析则是有了一批样本,不知道它们的分类,甚至连分成几类也不知道,希望用某种方法把观测进行合理的分类,使得同一类的观测比较接近,不同类的观测相差较多,这是无指导的学习。    所以,聚类分析依赖于对观测间的接近程度(距离)或相似程
转载 2023-12-03 13:46:39
114阅读
聚类是数据挖掘描述任务的一个重要组成部分。数据挖掘任务包括描述性任务和预测性任务两种。描述性任务包括聚类、关联分析、序列、异常检测等,预测性任务包括回归和分类。聚类:将数据对象划分为若干类,同一类的对象具有较高的相似度,不同类的对象相似度较低。从这个简单的描述中,可以看出聚类的关键是如何度量对象间的相似性。较为常见的用于度量对象的相似度的方法有距离、密度等。1 基于距离度量对象相似性的思想凡是满足
Python 中,聚类分析是一种无监督机器学习方法,旨在将数据分成若干个群集。它通常用于发现数据中的潜在结构或模式,并将数据分组为具有共同特征的群集。聚类分析有许多不同的算法,如 k-均值聚类、层次聚类和密度聚类。每种算法都有自己的优缺点,因此在使用时应根据数据特点和分析目标选择合适的算法。Python 中有许多机器学习库可用于聚类分析,如 scikit-learn、pandas 和 scip
转载 2023-06-05 11:30:15
174阅读
聚类就是将数据对象分组成多个类或者簇,划分的原则是在同一个粗中的对象之间具有较高的相似度,而不同簇中的对象差别较大。属于一种无指导的学习方法。  好的聚类算法应该满足以下几个方面:(1)       可伸缩型:无论对小数据量还是大数据量应该都是有效的。(2)      
转载 2023-08-10 01:49:55
449阅读
目录前言一、常用的数据分析库以及基本函数和相关概念的介绍聚类:无监督学习中对一组训练数据按照不同的特征进行分类,不给予相关的y,只有x,可以出现多个映射y二、Knn步骤1.导入数据集和相应的库函数2.可视化数据集,每一类随机选取7张图片3.随机采样数据集4.导入k近邻分类器模块 5.求解测试集和训练集欧式距离6.交叉验证个人心得:前言以完成iris的数据集的可视化分析聚类分析和knn算
这是 python 数据分析案例系列的第二篇,主要是聚类分析,实现起来较为简单。在处理实际的数据分析案例时,我们面临的往往是比较复杂的研究对象,如果能把相似的样品(或指标)归成类,处理起来大为方便。聚类分析目的就是把相似的研究对象归成类先贴上总结的聚类分析基本步骤:算法过程如下:1)从N个文档随机选取K个文档作为 质心2)对剩余的每个文档测量其到每个 质心 的距离,并把它归到最近的质心的类3)重新
1. 聚类分析的提出 物以类聚,人以群分!志同而道合,即具有相同特点的物体(或人类)往往更容易走近,从而形成自己的一个“圈子”。 在现代零售行业,顾客群细分是最为常见的一种业务需求,一般情况下,会从客户性别、年龄、职业、消费金额等一个变量进行分组,或者几个简单变量交叉分组。但这种传统的客户细分模式往往会体现以下弊端: 1)客户细分之前,需要人为指定分类变量,需要用几个变量
Python数据挖掘实例:K均值聚类任务任务要求数据预览分析代码实现结果分析数据文件链接 任务任务要求数据文件链接在全文的最后 借助Python软件进行上市公司财务状况数据挖掘与统计分析。 已知:132只股票、32个因素变量的4个日期数据记录(共528条记录)。要求用数据挖掘软件分析如下问题:抽取132只股票公司的财务指标数据中无缺失的指标变量数据,形成数据集X。所给数据已作一致化和无量纲化处理
  • 1
  • 2
  • 3
  • 4
  • 5