经典遗传算法及简单实例(MATLAB)1. 遗传算法简单介绍1.1 理论基础1.2 算法要点1.1 编码1.2 适应度函数1.3 基本流程2. 代码实例(MATLAB)2.1 代码汇总2.1 初始化种群2.2 计算适应度2.3 迭代终止判断2.4 自然选择(轮盘赌法)2.5 配对交叉(单点)2.6 变异(基本位变异)2.7 获得最优解2.8 雪兔遗传结果2.9 改善遗传算法的方法3. 多多交流!
转载
2023-10-24 08:58:40
166阅读
在此之前我们通过一个小故事来通俗地讲解遗传算法: 从前有一群快乐的袋鼠(初代),生活在某某不知名的山上,有的袋鼠喜欢生活在高处,有的袋鼠喜欢生活在山脚,如图: 可是天有不测风云,袋鼠有祸兮旦福。随着全球气候变暖,生活在山脚的袋鼠被热死了(所以说保护环境
转载
2023-08-15 15:06:11
51阅读
了解遗传算法遗传算法是一种最优化算法,所谓最优化问题,就是这样一类问题,满足它的解(称为可行解)有很多(通常是极多)对于每一种解有一个评价函数得到一个评价值,也就确定了解集的一个偏序关系,在这个偏序关系的求最小值(或最大值)或者近似最小值(或最大值)。因为通常可行解非常之多,所以确定性算法很难做到这一点,而遗传算法是模拟了生物学中物种进化的过程的一种最优化算法,简单来说,遗传算法=遗传操作+遗传选
转载
2024-01-12 09:33:38
73阅读
人工智能—遗传算法GA遗传算法遗传算法的使用方法遗传算法应用不足之处 这几天读书(人工智能相关),遇到了好多奇奇怪怪的“概念”。比如下面这个遗传算法遗传算法遗传算法是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择以及杂交等。遗传算法通常实现方式为一种计算机模拟。对于一个最优化问题,一定数量的候选解(称
转载
2024-04-25 10:55:19
34阅读
遗传算法学习——使用python做路径规划一、引言二、算法伪代码三、算法流程以及代码实现1、地图创建2、种群初始化小结3、适者生存之适应度函数小结4、物竞天择之选择小结5、遗传学之交叉小结6、遗传学之变异小结7、更新种群以及输出结果四、代码工程文档结束语==问题解决==1、解决种群规模随迭代次数增加而减小的问题 一、引言 机器人控制过程中,路径规划是其中重要的一环。因此本文采用遗传算法对机器人
转载
2023-06-28 14:13:13
272阅读
选择算子很多,本文先做个简单汇总,等应用时再自行研究 轮盘赌选择(roulette wheel selection)锦标赛选择(tournament selection)随机遍历抽样(stochastic universal selection)局部选择(local selection)截断选择(truncation selection) 轮盘赌选择个体适应度越高,被选择的概率
算法特征:自由空间, 定长编码核心操作:选择: 择优选择交叉: 全空间可遍历变异: 增强全空间的搜索能力编码选择:二进制编码, 字符编码, 小数编码注意: 编码选择以方便核心的三个操作为准, 具体问题具体分析.适用范围:一般来讲, 如果一个优化问题的特征空间满足遗传算法的算法特征, 那么遗传算法自然适用;如果不满足, 则问题可能需要经过一定的技巧和抽象, 使之能够进行核心的三个操作, 那么遗传算法
转载
2023-07-04 19:35:24
278阅读
基于python语言,实现经典遗传算法(GA)对车辆路径规划问题(CVRP)进行求解。 目录优质资源1. 适用场景2. 求解效果3. 问题分析4. 数据格式5. 分步实现6. 完整代码参考 1. 适用场景求解CVRP车辆类型单一车辆容量不小于需求节点最大需求单一车辆基地2. 求解效果(1)收敛曲线(2)车辆路径3. 问题分析CVRP问题的解为一组满足需求节点需求的多个车辆的路径集合。假设某物理网络
目录python DEAP框架Genetic Programming基本过程回顾DEAP 举例讲解0. 导入模块1. Primitive Set的创建2. creator创建个体类3. Toolbox3.5. 统计数据4. Launching参考资料 (Reference) python DEAP框架 DEAP: 一个Python进化算法框架
Core核心模块:base: 基
转载
2023-09-06 12:47:19
199阅读
前言最近需要用到遗传算法来优化一些东西,最初是打算直接基于某些算法实现一个简单的函数来优化,但是感觉单纯写个非通用的函数运行后期改进算子或者别人使用起来都会带来困难,同时遗传算法基本概念和运行流程相对固定,改进也一般通过编码机制,选择策略,交叉变异算子以及参数设计等方面,对于算法的整体结构并没有大的影响。这样对于遗传算法来说,就非常适合写个相对固定的框架然后给算子、参数等留出空间以便对新算法进行测
转载
2023-08-21 15:19:05
114阅读
遗传算法模仿了生物遗传进化的过程,可以在给定范围内搜索最优解。遗传算法的设计一般包括参数编码、初始群体的设定、适应度函数的设计、遗传操作设计(选择、交叉、变异)、控制参数设定等。0.问题在这里,我们基于python使用遗传算法尝试搜索函数\(y = -x^2+2x+5\)
在区间\([0,63]\)内的最大值,简便起见只取区间内的整数。1.参数编码对于本问题,用6个二进制位即可表示0~63的所有整
转载
2023-06-16 14:38:33
330阅读
学习代码来源于:遗传算法python一.主要思想遗传算法是根据达尔文的“适者生存,优胜劣汰”的思想来找到最优解的额,其特点是所找到的解是全局最优解,相对于蚁群算法可能出现的局部最优解还是有优势的。二.主要名词个体(染色体):一个染色体代表一个具体问题的一个解,一个染色体包含若干基因。基因:一个基因代表具体问题解的一个决策变量。种群:多个个体(染色体)构成一个种群。即一个问题的多组解构成了解的种群。
转载
2023-06-28 00:58:56
375阅读
引言遗传算法在我看来是一种调参的时候可以考虑的算法,是一种可以找到全局最优参数的一种方法,当需要调参的数据范围很大的时候,穷举法显然不是一个很好的选择!这里通过一个简单的例子将遗传算法进行实现,以小见大。介绍遗传算法通过模拟自然界生物的优胜劣汰进化现象,把需要求解的问题抽象为一个遗传进化问题,把搜索空间映射为遗传空间,把可能的解编码成一个向量(染色体),而向量中的每一个元素则成为基因,通过不断计算
转载
2023-10-09 20:16:19
250阅读
遗传算法简介:遗传算法(Genetic algorithm)属于演化计算( evolutionary computing),是随着人工智能领域发展而来的一种智能算法。正如它的名字所示,遗传算法是受达尔文进化论启发。简单来说,它是一种通过模拟自然进化过程搜索最优解的方法。如果你想了解遗传算法相关的知识,可以学习实验楼上的教程:【Python实现遗传算法求解n-queens问题】,该实验分两节:第一节
转载
2023-07-25 13:37:23
463阅读
Python优化算法—遗传算法一、前言二、安装三、遗传算法3.1 自定义函数3.2 遗传算法进行整数规划3.3 遗传算法用于旅行商问题3.4 使用遗传算法进行曲线拟合 一、前言优化算法,尤其是启发式的仿生智能算法在最近很火,它适用于解决管理学,运筹学,统计学里面的一些优化问题。比如线性规划,整数规划,动态规划,非线性约束规划,甚至是超参数搜索等等方向的问题。但是一般的优化算法还是matlab里面
转载
2023-09-18 21:43:37
225阅读
文章目录变量声明与赋值链式赋值系列解包赋值常量内置数据类型、运算符普通运算符增强型赋值运算符复合赋值运算符比较运算符逻辑运算符同一运算符整数缓存问题运算符优先级问题整数进制浮点数类型转换int()的类型转换(不可四舍五入)float()的类型转换round()四舍五入str()的类型转换unix时间点、 当前时间布尔值字符串引号创建字符串空字符串和 len()函数转义字符字符串拼接与复制prin
转载
2023-10-15 22:59:21
85阅读
你是如何挖掘因子的呢?基于经验吗?但经验是有限的,总会有用尽的时候。基于研报或者论文等公开资料?但这类因子不可避免地涉及到因子拥挤问题,毕竟有效的因子,其他人也会用。 那么还有其他方法吗?答案是有。 今天我们便基于华泰证券的《人工智能系列之基于遗传规划的选股因子挖掘》,给大家介绍一款因子挖掘的利器: 遗传规划 。 什么是遗传规划? 遗传规划是演化算法的分支,是一种启发式的公式演
转载
2023-08-27 11:05:52
75阅读
无约束的遗传算法(最简单的)最开始真正理解遗传算法,是通过这个博主的讲解,安利给小白们看一看,遗传算法的Python实现(通俗易懂),我觉得博主写的让人特别容易理解,关键是代码也不报错,然后我就照着他的代码抄了一遍,认真地理解了一下每一个模块,:编码、解码、适应度函数写法、选择、交叉和变异的实现过程,下面也谈一谈我在整个过程中的认识,以及对代码的一种通俗解释: 1、编码:这里主要运用的就是一种二进
转载
2023-09-20 06:31:17
256阅读
前言:遗传算法的原理及python实现一、原理遗传算法(Genetic Algorithm, GA)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,不需要确定的规则就能自动获取和指导优化的搜索空间,自适应地
转载
2023-07-03 16:33:38
166阅读
重要参考:1,安装(Anaconda+geatpy)Anaconda安装遗传和进化算法库函数安装——geatpy输入:pip install geatpyPython中输出版本检查是否是最新版:import geatpy as ea
print(ea.__version__)2,Geatpy官网Geatpy3,遗传算法遗传算法中每一条染色体,对应着遗传算法的一个解决方案,一般我们用适应性函数(fi
转载
2023-12-12 15:34:23
239阅读