1.处理文本数据神经网络不会接收原始的文本作为输入,它只能处理数值型张量。于是,文本向量化便是对文本处理的关键一步,所谓文本向量化就是将文本转化为数值型张量的过程。他有多种实现方式:将文本分割成单词,将每个单词转化为一个向量将文本分割成字符,将每个字符转化为一个向量提取单词或者字符的n-gram,并将每个n-gram转化为一个向量。n-gram是多个连续单词或字符的集由于大多数场景中单独对字符进行
转载 2023-08-17 18:50:37
254阅读
记录ng讲的deep learning课的笔记,第3课:Python and Vectorization 1 向量化( Vectorization )在逻辑回归中,以计算z为例,$ z =  w^{T}+b $,你可以用for循环来实现。但是在python中z可以调用numpy的方法,直接一句$z = np.dot(w,x) + b$用向量化
转载 2023-06-12 20:22:55
330阅读
文章目录4.1 NumPy ndarray:多维数组对象创建ndarray的数据类型向量化:数组算术基础索引与切片布尔索引bool算数运算符神奇索引数组转置和换轴4.2 通用函数:快速的逐元素数组函数4.3 使用数组进行面向数组编程将条件逻辑作为数组操作:where方法数学和统计方法any() all()排序sort()unique()in1d()4.5 线性代数点乘numpy.linalg4.
转载 2023-08-08 07:40:04
362阅读
数学问题是:总和中的表达式实际上比上面的表达式复杂得多,但这是一个最小的工作示例,不会使事情过于复杂.我用Python编写了6个嵌套for循环,并且正如预期的那样表现非常糟糕(真正的表单执行得很糟糕,需要评估数百万次),即使在Numba,Cython和朋友的帮助下也是如此.这里使用嵌套for循环和累积和来编写:import numpy as np def func1(a,b,c,d): ''' M
一、多维数组1、生成ndarray (array函数).np.array()生成多维数组例如:import numpy as npdata1=[6,7.5,8,0,1] #创建简单的列表print(data1)arr1=np.array(data1) #将列表创建数组print(arr1)2、ndarry的数据类型(1)dtype() #获取数组元素类型(浮点数、复数、整数等)data=np.ra
python数据类型_在量化交易中的用途一、整数1、表示数量或份额,例如交易的股票数量、ETF基金份额等。num_shares = 1000 # 股票数量为1000 num_futures = 5 # 期货合约数量为 5 张2、记录交易次数和循环计数器。num_trades = 0 # 初始化交易次数为0 for i in range(10): # do something
参考资料:https://github.com/lijin-THU/notes-python(相应实体书为:《自学Python——编程基础、科学计算及数据分析》)1. 向量化函数(1)自定义sinc函数1 import numpy as np 2 3 def sinc(x): 4 if x == 0.0: 5 return 1.0 6 else: 7
转载 2023-05-21 12:35:37
164阅读
一、概述1.1 从数据处理到人工智能数据表示->数据清洗->数据统计->数据可视化->数据挖掘->人工智能数据表示:采用合适方式用程序表达数据数据清理:数据归一化、数据转换、异常值处理数据统计:数据的概要理解,数量、分布、中位数等数据可视化:直观展示数据内涵的方式数据挖掘:从数据分析获得知识,产生数据外的价值人工智能:数据/语言/图像/视觉等方面深度分析与决策Pyth
作者:Cheever编译:1+1=6今天给大家好好讲讲基于Pandas和NumPy,如何高速进行数据处理!1向量化1000倍的速度听起来很夸张。Python并不以速度著称。这是真的吗?当然有可能 ,关键在于你如何操作!如果在数据上使用for循环,则完成所需的时间将与数据的大小成比例。但是还有另一种方法可以在很短的时间内得到相同的结果,那就是向量化。这意味着要花费15秒的时间来编写代码,并且在15毫
文章目录1. NumPy ndarray:多维数组对象1.1 生成ndarray1.2 ndarray的数据类型1.3 NumPy数组算术1.4 基础索引与切片1.4.1 数组的切片索引1.5 布尔索引1.6 神奇的索引1.7 数组转置和换轴2. 通用函数:快速的逐元素数组函数3. 使用数组进行面向数组编程3.1 将条件逻辑作为数组操作3.2 数学和统计方法3.3 布尔值数组的方法3.4 排序3
文章目录一、向量化二、逻辑回归向量化三、广播四、 A note on python/numpy vectors五、逻辑回归损失函数的解释六、总结 一、向量化深度学习算法中,数据量很大,在程序中应该尽量减少使用loop循环语句,而可以使用向量运算来提高程序运行速度。向量化(Vectorization)就是利用矩阵运算的思想,大大提高运算速度。例如下面所示在Python中使用向量化要比使用循环计算速
转载 2023-08-10 02:15:28
214阅读
文章目录1. Vectorization2. More Vectorization Examples3. Vectorizing Logistic Regression4. Vectorizing Logistic Regression’s Gradient Output5. Broadcasting in Python6. A note on python/numpy vectors7. Qu
Vectorization深度学习算法中,数据量很大,在程序中尽量减少使用loop循环语句,而可以使用向量运算来提高程序运行速度。向量化(Vectorization)就是利用矩阵运算的思想,大大提高运算速度。例如下面所示在Python中使用向量化要比使用循环计算速度快得多。21import numpy as np import time a = np.random.rand(1000000) b
  图的向量化表示,意即通过多维向量空间中的一点来表示一个图的特征,方便使用机器学习的方法对其进行分类操作。   首先讨论怎么从一副普通的图像中提取出特征图:   原图是(a),然后对其做碎片化,得到图(b),对原图做二值化得到图(c),图(b)和图(c)叠合得到图(d)。对于图(d)做下列定义:   各个色块被定义为特征图的各个节点,节点编号集合是颜色集合{黑,蓝,棕,绿,灰,橙,粉,紫,红,白
Python3入门机器学习4.5 梯度下降法的向量化和数据标准化1.向量化: 在上一节中,我们推导出求解梯度的公式如下: 继续变形,使其可以向量化,如下: 于是求梯度的函数的实现方式也相应的改变,如下:def dJ(theta, X_b, y): # res = np.empty(len(theta)) # res[0] = np.sum(X_b.d
第四章 NumPy基础:数组与向量化计算NumPy,是Numerical Python的简称,是目前Python数值计算中最重要的基础包,其数组对象作为数据交换的通用语主要内容 ndarray,一种高效多维数组,提供了基于数组的便捷算术操作以及灵活的广播功能。对所有数据进行快速的矩阵计算,而无须编写循环程序。对硬盘中数组数据进行读写的工具,并对内存映射文件进行操作。线性代数、随机数生成以及傅
转载 2024-02-13 11:44:41
86阅读
文章目录1.3.1 向量化(Vectorization)1.3.2 更多向量化的例子(More Vectorization Examples)1.3.3 向量化logistic回归(Vectorizing Logistic Regression)1.3.4 向量化logistic回归的梯度输出(Vectorizing Logistic Regression’s Gradient Output)1
sentence-transformers 图像数据向量化PyTorch pip install -i transformers transformers包又名pytorch-transformers或者pytorch-pretrained-bert。 它提供了一些列的STOA模型的实现,包括(Bert、XLNet、RoBERTa等)
转载 2023-09-26 09:36:57
1285阅读
上节课我们主要介绍了逻辑回归,以输出概率的形式来处理二分类问题。我们介绍了逻辑回归的Cost function表达式,并使用梯度下降算法来计算最小化Cost function时对应的参数w和b。通过计算图的方式来讲述了神经网络的正向传播和反向传播两个过程。本节课我们将来探讨Python向量化的相关知识。——回顾1Vectorization深度学习算法中,数据量很大,在程序中应该尽量减少使用loo
转载 2023-08-10 13:29:50
203阅读
目录请先看前言1 人工智能1.1 科普1.2 基础知识1.2.3 神经网络如何判断自己预测得是否准确1.2.4 神经网络是如何进行学习的1.2.5 计算图1.2.6 如何计算逻辑回归的偏导数1.2.7 向量化1.2.8 如何开始使用python1.2.9 如何向量化人工智能算法1.2.10 [实战编程]教你编写第一个人工智能程序1.3 初级神经网络1.3.1 浅层神经网络1.3.2 如何计算浅层神
  • 1
  • 2
  • 3
  • 4
  • 5