# Python短文本分类
在自然语言处理(NLP)领域,短文本分类是一项重要任务,广泛应用于情感分析、主题分类、垃圾邮件检测等场景。随着机器学习和深度学习技术的发展,Python成为了进行文本分类研究的热门语言。本文将介绍短文本分类的基本概念、常用方法以及代码示例,帮助你理解和实现短文本分类任务。
## 短文本分类的基本概念
短文本分类是指将较短的文本(如微博、评论、新闻标题等)分配到一个
原创
2024-09-19 06:18:50
43阅读
** 利用Python进行文本分类,
可用于过滤垃圾文本抽样人工标注样本文本中垃圾信息样本建模模型评估新文本预测
参考:http://scikit-learn.org/stable/user_guide.html
PYTHON自然语言处理中文翻译 NLTK Natural Language Processing with Python 中文版
主要步骤:分词特征词提取生成词-文档矩阵整合分类变量建
转载
2023-07-02 21:54:38
141阅读
ResLCNN模型以Word2vec和GloVe词向量构成的句子矩阵作为输入,第1层LSTM根据隐藏层和
原创
2023-01-16 21:06:51
335阅读
https://opendata.stackexchange.com/questions/6080/data-sets-for-short-text-classification
原创
2022-07-19 11:52:48
186阅读
如何把词转换为向量给定任何一个或者一组单词,我们都可以通过查询这个excel,实现把单词转换为向量的目的,这个查询和替换过程称之为Embedding Lookup。在实际场景中,我们需要把Embedding Lookup的过程转换为张量计算 如何让向量具有语义信息事实上,在自然语言处理领域,使用上下文描述一个词语或者元素的语义是一个常见且有效的做法。我们可以使用同样的方式训练词向量,让这
在进行文本分类时,毫无疑问会涉及到对文本数据进行预处理,包括文档切分、文本分词、去停用词(包括标点、数字、单字和其它一些无意义的词)、文本特征提取、词频统计、文本向量化等操作。下面就这几方面作一个概括性的介绍,具体的实现还有待慢慢的研究。文档切分文档切分这个操作是可选的,取决于你获取到的文档集合的形式。如果你得到的文档集合本身就是一篇一篇文章分开的,那么这一步就可以省略了。反之,如果文档集合是一个
转载
2023-08-06 12:06:21
124阅读
统计中文词语出现的次数以政府一号文件为例,统计出现的中文词语数量按照一定标准输出,如出现次数等需要解决中文分词问题,如:这是一门好课 ->这是 一门 好课 输入:2018年一号文件.txt输出:出现次数超过50次的词语,不包括换行。 #WordCount.py
import jieba #引入外部库
f = open("2018年一号
转载
2023-06-25 11:13:58
134阅读
# 西班牙语短文本分类 NLP 实现指南
在自然语言处理(NLP)领域,文本分类是一个重要的任务,尤其是在社交媒体、评论分析和新闻分类等场景中。在本文中,我将向你展示如何实现一个简单的西班牙语短文本分类器。我们将遵循一些关键步骤,将整个过程简化为几个主要部分。
## 流程概述
我们可以将文本分类的流程分为以下几个步骤:
| 步骤 | 描述 |
|------|------|
| 数据收集
一. 简介 FastText(Bag of Tricks for Efficient Text Classification)是Facebook AI Research提出的一种神经网络结构,它是一个简单而又高效的线性分类模型,能够在很短的时间内实现海量文本分类,支持亿万数据量。 并且,face
一. 简介 FastText(Bag of Tricks for Efficient Text Classification)是Facebook AI Research提出的一种神经网络结构,它是一个简单而又高效的线性分类模型,能够在很短的时间内实现海量文本分类,支持亿万数据量。 并且,face
之前几篇文章讲到了文档主题模型,但是毕竟我的首要任务还是做分类任务,而涉及主题模型的原因主要是用于text representation,因为考虑到Topic Model能够明显将文档向量降低维度,当然TopicModel可以做比这更多的事情,但是对于分类任务,我觉得这一点就差不多了。 LDA之前已经说到过,是一个比较完善的文档主题模型,这次试用的是JGibbsLDA开源的LDA代码做L
转载
2024-05-08 20:33:20
101阅读
【火炉炼AI】机器学习039-NLP文本分类器(本文所使用的Python库和版本号: Python 3.6, Numpy 1.14, scikit-learn 0.19, matplotlib 2.2, NLTK 3.3)前面我们学习了很多用NLP进行文本的分词,文本分块,创建词袋模型等,这些步骤可以认为是NLP文本处理的基础,此处我们来看NLP的一个非常重要的应用,对文本使用监督学习进行自动分类
一.前言之前写过一篇基于循环神经网络(RNN)的情感分类文章,这次我们换种思路,采用卷积神经网络(CNN)来进行文本分类任务。倘若对CNN如何在文本上进行卷积的可以移步博主的快速入门CNN在NLP中的使用一文。话不多说,直接上干货。二.数据集2.1 数据集介绍本次实验的数据集来源于Github上一个2.4k星的中文NLP开源数据集项目CLUEbenchmark(官方地址),本文选择的是其中的文本分
转载
2024-03-15 16:01:15
51阅读
如果想要使用 Python 进行文本分类,需要使用相应的机器学习算法和库。具体来说,可以使用 scikit-learn 这个库中的朴素贝叶斯分类器、支持向量机分类器、决策树分类器等来对文本进行分类。首先,需要准备好训练数据和测试数据。训练数据是指用来帮助模型学习的数据,测试数据是用来评估模型效果的数据。在进行文本分类时,训练数据通常包含若干个文本和对应的分类标签,测试数据也是如此。然后,需要对文本
转载
2023-06-30 21:30:05
175阅读
一、概述上一篇文章中简单介绍了文本聚类,体验了无标注语料库的便利性。然而无监督学习总归无法按照我们的意志预测出文档的类别,限制了文本聚类的应用场景。很多情况下,我们需要将文档分门别类到具体的类别中。因此需要用到文本分类。本文便主要讲解文本分类的原理及实践。二、文本分类的概念文本分类,指的是将一个文档归类到一个或者多个类别的自然语言处理任务。值得一提的是,文档级别的情感分析也可以视作文本分类任务。此
转载
2023-08-07 21:10:20
92阅读
这篇博客主要是介绍一下我最近开源的python库——DeepClassifier,用于文本分类,目前已经集成了较多的文本分类模型,欢迎大家安装、star以及fork~ 动机首先谈谈我为什么要开发这个库。有两个原因吧~第一,我自身是做NLP这块的,相信做NLP的小伙伴们都知道,文本分类是NLP中最基础并且是最广泛的任务。同时这也是我们入门NLP的尝试的第一个任务。虽然目前已有的文本分类模型都相对简单
转载
2023-10-10 20:58:07
79阅读
理论什么是朴素贝叶斯算法?朴素贝叶斯分类器是一种基于贝叶斯定理的弱分类器,所有朴素贝叶斯分类器都假定样本每个特征与其他特征都不相关。举个例子,如果一种水果其具有红,圆,直径大概3英寸等特征,该水果可以被判定为是苹果。尽管这些特征相互依赖或者有些特征由其他特征决定,然而朴素贝叶斯分类器认为这些属性在判定该水果是否为苹果的概率分布上独立的。朴素贝叶斯分类器很容易建立,特别适合用于大型数据集,众所周知,
转载
2023-08-12 21:24:53
149阅读
事情是这样的,有一个图片数据集需要根据分成很多类以便于给其设置标签,但所有的图片都在一个文件里,另外又给了个.txt文件,其中每行都是对应图片的类别。例如第1行对应的第0001.jpg是第14类(每个类都有多张图片),显而易见,.txt文件的行数和图片的总数是相等的。以下为待分类的文件:现在需要根据标签将同类的文件放入同一个文件夹中,如图为分类完成的结果,总览和第一类文件夹: 其中过滤了图片宽和高
转载
2023-09-28 13:37:07
14阅读
##本文加载语料库,并对语料库进行文本分类。使用语言:python,环境:jupyterhub。本文使用的是NLTK库。##首先,关于语料库数据集,是zip压缩文件的形式存在的。本文作为案例的数据集来自于联合国大会的演讲,这些演讲分为澳大利亚和新西兰的。因此,在zip的语料库文件夹里,分为“AU”和“NZ”两个子语料库。子语料库中内容是以txt为格式存下的,每一篇文章是一个txt,本案例“AU”和
转载
2023-10-03 11:49:29
98阅读
希望将注意力分配给有实际意义、词性重要的名词或动词, 而相对较少或几乎不分配注意力给介词
原创
2023-01-16 21:05:21
237阅读