我有一个数码相机获得的colorchecker图像,我如何使用它来使用opencv校准图像?按照下面的颜色检查器图像:最佳答案 您是否在询问如何进行颜色校准或如何使用OpenCV进行颜色校准?要进行颜色校准,请使用校准板的最后一行(灰色调).以下是您应该逐步进行颜色校准的方法:>捕捉图像并在灰色区域内拍摄小区域.中间的10×10像素应该没问题.完成此步骤后,您将拥有6个10×10区域.&gt
一、使用OpenCV处理图像1.不同颜色空间的转换  OpenCV中有数百种关于在不同色彩空间之间转换的方法。当前,在计算机视觉中有三种常用的色彩空间:灰度、BGR以及HSV(Hue, Saturation, Value)  灰度色彩空间是通过去除彩色信息来将其转换为灰阶,灰度色彩空间对中间处理特别有效,比如人脸检测。  BGR,即蓝-绿-红色彩空间,每一个像素点都由一个三元数组来表示,分别代表蓝
文章目录一、彩色图像文件转为灰度文件1. 使用opencv2. 不使用opencv二、将彩色图像转为HSV、HSI格式1. HSV2. HSI三、车牌数字分割为单个的字符图片1.图片准备2. 代码实现1. 读取图片2. 图片预处理3. 输出结果4. 源码四、参考 一、彩色图像文件转为灰度文件1. 使用opencv代码:import cv2 as cv img = cv.imread('./p
目标在本教程中,你将学习如何将图像从一个色彩空间转换到另一个,像BGR↔灰色,BGR↔HSV等除此之外,我们还将创建一个应用程序,以提取视频中的彩色对象你将学习以下功能:cv.cvtColor,cv.inRange等。改变颜色空间OpenCV中有超过150种颜色空间转换方法。但是我们将研究只有两个最广泛使用的,BGR↔灰色和BGR↔HSV。 对于颜色转换,我们使用cv函数。cvtColor(inp
opencv python(四) ---- 颜色空间转换、获取特定颜色图像RGB和HSVRGBHSVRGBHSV颜色空间转换获取特定颜色图像 RGB和HSVRGBRGB是从颜色发光的原理来设计定的,通俗点说它的颜色混合方式就好像有红、绿、蓝三盏灯,当它们的光相互叠合的时候,色彩相混,而亮度却等于两者亮度之总和,越混合亮度越高,即加法混合。红、绿、蓝三个颜色通道每种色各分为256阶亮度,在0时“
一. 使用cvCvtColor函数将RGB颜色空间转换到HSV颜色空间所需函数:1.cvCvtColor函数功能:颜色空间转换函数原型:void cvCvtColor( const CvArr* src, CvArr* dst, int code );参数介绍:const CvArr* src: 输入图像CvArr* dst: 输出图像(输出图像必须和输入图像的size,颜色位深度,
HSV颜色模型HSV(Hue, Saturation, Value)是根据颜色的直观特性由A. R. Smith在1978年创建的一种颜色空间, 也称六角锥体模型(Hexcone Model)。这个模型中颜色的参数分别是:色调(H),饱和度(S),亮度(V)。色调H:用角度度量,取值范围为0°~360°,从红色开始按逆时针方向计算,红色为0°,绿色为120°,蓝色为240°。它们的补色是:黄...
原创 2021-07-29 13:47:20
7107阅读
一、HSV颜色模型介绍HSV(Hue, Saturation, Value)是根据颜色的直观特性创建的一种颜色空间, 也称六角锥体模型。该模型中颜色的参数分别是色调(H)、饱和度(S)、明度(V)。(1)色调 H:用角度度量,取值范围为0°~360°。从红色开始按逆时针方向计算,红色为0°,绿色为120°,蓝色为240°。它们的补色是:黄色为60°,青色为180°,紫色为300°。(2)饱和度 S
RGB颜色空间 在RGB中,一幅图像有三个独立的图像平面或通道组成:红,绿,蓝(以及第四个通道透明度)。   RGB颜色表 资料:网络  ◇  编制:王践舜      RGB(255,23,140)是光的三原色,也即红绿蓝Red、Green、Blue,它们的最大值是255,相当于100%。  白色:rgb(255,255,255)  黑色:rgb(0,0,0)  红色:rgb(255,0,0
转载 2018-10-08 21:01:00
1735阅读
本篇文章记录学习如何将图像从一种颜色空间转换为另一种颜色空间,例如BGR<–>Gray,BGR <–>HSV,BGR<–>Yuv,BGR<–>Ycrcb等。创建一个应用程序,从一幅图像中获取某个特定颜色的物体。学习以下函数:cv2.cvtColor(),cv2.inRange() 等。更改色彩空间OpenCV提供了150多种颜色空间转换方法。但是,经
这里以python版本opencv演示如何查找颜色
原创 2024-10-23 13:57:20
390阅读
HSV(Hue, Saturation, Value)是根据颜色的直观特性由A. R. Smith在1978年创建的一种颜色空间, 也称六角锥体模型(Hexcone Model)。注意的是OpenCV中H∈ [0, 180), S ∈ [0, 255], V ∈ [0, 255]这个模型中颜色的参数分别是:色调(H),饱和度(S),亮度(V)。色调H:用角度度量,取值范围为0°~360°,从红色开
 HSV颜色模型HSV(Hue, Saturation, Value)是根据颜色的直观特性由A. R. Smith在1978年创建的一种颜色空间, 也称六角锥体模型(Hexcone Model)。这个模型中颜色的参数分别是:色调(H),饱和度(S),亮度(V)。HSV颜色空间模型[1]色调H:用角度度量,取值范围为0°~360°,从红色开始按逆时针方向计算,红色为0°,绿色为120°,蓝
转载 2024-05-10 18:13:06
112阅读
一、颜色空间转换import cv2 import numpy as npimg = cv2.imread('lena.jpg')# 转换成灰度图 img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) cv2.imshow('img', img) cv2.imshow('gray', img_gray) cv2.waitKey(0)颜色转换其实是数学运算
转载 2023-07-05 17:46:40
362阅读
一、数据准备 二、划分训练集-测试集 三
原创 2018-07-13 08:57:38
2514阅读
// Note:  颜色分割:提取特定颜色/////////////////////////////////////////////////////////////////////////////void CColorSegDlg::ColorSegByHSV(IplImage* img)// 提取特定颜色{ //====================== 变量定义===============
转载 2011-12-07 21:35:00
260阅读
本节为opencv数字图像处理(13):彩色图像处理基础:彩色模型与伪彩色图像处理,主要包括:三种彩色模型(RGB、CMY/CMYK、HSI)及其互相转换的方法、伪彩色图像的两种处理方法(灰度分层、灰度到彩色的转换)。1. 彩色模型  数字图像处理中,最通用的面向硬件的彩色模型是RGB模型,用于彩色监视器和一大类彩色视频摄像机;CMY(青、粉红、黄)模型和CMYK(青、粉红、黄、黑)模型是针对彩色
前言项目车号识别过程中,车体有三种颜色黑车黑底白字、红车红底白字、绿车黄底绿字,可以通过判断车体的颜色信息,从而判断二值化是否需要反转,主要是基于rgb2hsv函数进行不同颜色的阈值判断。matlab代码可参考 与matlab中的rgb2hsv函数功能相同的opencv代码:vector<Mat> rgb2hsv(Mat image){ vector<Mat&gt
原创 2022-07-13 15:06:50
268阅读
H参数表示色彩信息,即所处的光谱颜色的位置。该参数用一角度量来表示,红、绿、蓝分别相隔120度。互补色分别相差180度。纯度S为一比例值,范围从0到1,它表示成所选颜色的纯度和该颜色最大的纯度之间的比率。S=0时,只有灰度。V表示色彩的明亮程度,范围从0到1。有一点要注意:它和光强度之间并没有直接的联系。RGB转化到HSV的算法:max=max(R,G,B) min=min(R,G,B) if R = max, H = (G-B)/(max-min) if G = max, H = 2 + (B-R)/(max-min) if B = max, H = 4 + (R-G)/(max-min)
转载 2011-04-11 22:02:00
406阅读
2评论
YUV420换为RGB24/BR24YUV格式具有亮度信息和色彩信息分离的特点,但大多数图像处理操作都是基于RGB格式。因此当要对图像进行后期处理显示时,需要把YUV格式转换成RGB格式。RGB与YUV的变换公式如下:YUV(256 级别) 可以从8位 RGB 直接计算:Y = 0.299 R + 0.587 G + 0.114 BU = - 0.1687 R - 0.3313 G + 0.5
转载 2024-05-08 13:29:01
405阅读
  • 1
  • 2
  • 3
  • 4
  • 5