发展应用场景:smartly reject non-speech noises, detect/reject out-of-vocabularywords, detect/correct some potential recognition mistakes, clean up human transcriptionerrors in large training corpus, guide th
转载
2024-04-04 08:00:19
37阅读
模板匹配在图像处理中经常使用,该算法主要用于寻找图像中与模板图像相同的区域。此外,也用于图像定位,通过模板匹配找到指定的位置,然后进行后续的处理。在进行模板匹配的时候,需要先制作模板,模板图像一般是从原始图像中取出一块图像区域作为模板。模板图像一定要小于待匹配的图像。在opencv中,提供了6种模板匹配的方式,即平方差匹配法(TM_SQDIFF)、 归一化平方差匹配法(TM_SQDIFF_
转载
2024-05-04 10:19:00
109阅读
关联规则、Apriori算法原理及实战关联规则中三个重要知识点Apriori算法原理Apriori算法原理Apriori算法流程Apriori算法案例Apriori算法应用 关联规则中三个重要知识点某家水果店的订单清单如下:购物单号购买的水果1苹果、香蕉、梨2苹果、香蕉、梨、芒果3香蕉、梨、芒果、水蜜桃4苹果、芒果5苹果、水蜜桃支持度:百分比数,表示一个商品组合出现的次数与总次数之间的比值,支持
转载
2024-03-19 14:15:46
158阅读
前言 级联分类器的效果并不是很好,准确度相对深度学习较低,上一章节使用了dnn中的tensorflow,本章使用yolov3模型,识别出具体的分类。 Demo 320x320,置信度0.6 608x608,置信度0.6(.cfg里面是608) yolov3模型下载coco.names:模型具体的分类信息。https://github.com/pjreddie/
转载
2024-01-04 21:45:05
171阅读
基本思想V1:将输入图像分成S*S个格子,每隔格子负责预测中心在此格子中的物体。每个格子预测B个bounding box及其置信度(confidence score),以及C个类别概率。bbox信息(x,y,w,h)为物体的中心位置相对格子位置的偏移及宽度和高度,均被归一化.置信度反映是否包含物体,以及包含物体情况下位置的准确性。定义为Pr(Object)×IoU,其中Pr(Objec
转载
2024-04-25 05:22:12
49阅读
例子: 总共有10000个消费者购买了商品, 其中购买尿布的有1000人, 购买啤酒的有2000人, 购买面包的有500人, 同时购买尿布和啤酒的有800人, 同时购买尿布的面包的有100人。关联规则关联规则:用于表示数据内隐含的关联性,例如:购买尿布的人往往会购买啤酒。支持度(support)支持度:{X, Y}同时出现的概率,例如:{尿布,啤酒},{尿布,面包}同时出现的概率{尿布
转载
2024-03-13 14:15:46
126阅读
摘要置信度校正——预测代表真实正确性似然(可能性)的概率估计问题,在许多应用中对分类模型是重要的。通过大量的实验,我们观察到深度网络的深度、宽度、权重衰减和批归一化是影响校准的重要因素。在这篇文章中,还提出了一种基于早期置信度校准方法Platt scaling的变式——temperature scaling一.引言校准的概率的重要性分类网络不仅需要准确,还需要知道什么时候是不正确的。在一些实际应用
转载
2024-05-14 22:27:46
89阅读
置信区间是衡量测量精度的一个指标,也能显示出估算有多稳定,也就是说如果重复做某项实验,得到的结果与最初的估计有多接近。步骤:
确定要测试的情况:如“A大学男生的平均体重是80公斤”,则后续就是要测试在给定的置信区间内,能够准确预测A大学男生体重的概率;从所选总体中选择一个样本:从总体中抽取数据验证假设;计算样本均值和样本标准差:选择要用于估计总体参数的样本统计信息,如样本均值、样本标准差。总
转载
2023-09-21 12:06:24
286阅读
看到一篇机器学习中的置信区间与置信度很好的文章链接:https://www.techug.com/post/a-very-friendly-introduction-to-confidence-intervals.html 本文讨论了统计学中的一个基本术语 :置信区间。我们仅以一种非常友好的方式讨论一般概念,没有太多花哨的统计术语,同时还会使用 Python 完成简单的实现!尽管这个术语是非常基础
转载
2024-04-18 14:46:00
183阅读
在第3节中,我们学习了如何将预训练好的卷积神经网络作为特征提取器。通过加载预训练好的模型,可以提取指定层的输出作为特征向量,并将特征向量保存到磁盘。有了特征向量之后,我们就可以在特征向量上训练传统的机器学习算法(比如在第3节中我们使用的逻辑回归模型)。当然对于特征向量,我们也可以使用手工提取特征方法,比如SIFT[15],HOG[14],LBPs[16]等。一般来说,在计算机视觉任务中,深度学习相
1) Apriori算法:通过apriori算法来实现频繁项集的查询:支持度:数据集中包含该项集记录所占的比例,上例中{豆奶}的支持度=2/5,{啤酒,尿布}的支持度=3/5。置信度:针对像频繁集数量>=2的情况,例如{啤酒,尿布},那么置信度=支持度({尿布,啤酒})/支持度(尿布)。置信度的顺序对结果存在影响: &nb
转载
2024-02-29 13:26:55
616阅读
在很多统计研究,尤其是在医学研究中,经常需要计算样本比例,以及根据样本的比例估算总体率的95%置信区间。这篇文章介绍如何估算总体率的95%置信区间。一、计算公式根据上面的公式,要估算比例的置信区间,需要知道样本比例和标准误差。为了计算方便,我们举一个例子,假设有200个研究对象,50人是糖尿病患者。对此我们感兴趣的是患糖尿病的患者的比例。1、样本比例首先可以很简单的计算样本比例,只需要知道两个数据
转载
2023-11-23 21:47:05
172阅读
今天这篇聊聊统计学里面的置信度和置信区间,好像没怎写过统计学的东西,这篇试着写一写。1.点估计在讲置信度和置信区间之前先讲讲点估计,那什么是点估计呢?给你举两个例子你就知道了。现在你想要知道一个学校学生的身高情况,你可以把所有的学生测量一遍,然后得到答案,这种方法可以,而且得到的数据肯定是最真实的,但是这里有一个问题,什么问题呢?就是如果学生人数太多,全部测量的话工作量太大了,那怎么办呢?那就随机
转载
2024-06-27 22:52:38
122阅读
本篇非常简要地介绍了深度信念网络的基本概念。文章先简要介绍了深度信念网络(包括其应用实例)。接着分别讲述了:(1) 其基本组成结构——受限玻尔兹曼机的的基本情况,以及,(2) 这个基本结构如何组成深度信念网络。 本文仅仅能使读者了解深度信念网络这一概念,内容非常浅显,甚至有许多不严密的地方。如果有愿意深入了解受限玻尔兹曼机、深度信念网络的,想对深度学习有更多了解的,请访问深
ENVI5.4.1于2017年8月份正式发布,有以下一些新功能和增强:传感器和数据支持显示工具图像处理二次开发1 传感器和数据支持ADS80 Level-2产品(ENVI先前版本支持Level-1产品)Landsat 8 Surface Reflectance数据PlanetScope数据Sentinel-2 Level-2A,包括Amazon Web Services分发的文件哨兵-3
转载
2024-03-27 11:48:10
116阅读
关于置信区间和置信度的理解,在网上找了两个相关的观点感觉讲的很好,恍然大悟。 简单概括。 参数只有一个是固定的不会变。我们用局部估计整体。 参数95%的置信度在区间A的意思是: 正确:采样100次计算95%置信度的置信区间,有95次计算所得的区间包含真实值。 错误:采样100次,有95次真实值落在置信区间。
真实值不会变,变得是置信区间。
下面是两个引用: http://bbs.pin
转载
2023-12-19 20:44:15
100阅读
系列文章目录 文章目录系列文章目录前言一、研究目的二、研究方法创新点处理类不平衡的大多数方法交叉熵损失函数Brier Score三、DWB Loss总结 前言Dynamically Weighted Balanced Loss: ClassImbalanced Learning and Confidence Calibration of Deep Neural Networks 下载地址:DOI:
转载
2024-06-06 11:26:34
275阅读
在Excel表格分析数据的时候,小编自己用的最多的统计函数,应该是文章最后3个统计单元格个数的COUNT系列函数。再此基础上分析假设值是否成立,以及判断置信区间与关联度。是不是听起来感觉很难的样子,下面8个函数看起来难,其实用起来并不难。欢迎大家来学习!一、CHIDIST函数(=CHIDIST(1,2))用途是返回c2 分布的单尾概率。例如,某项遗传学实验假 设下一代植物将呈现出某一组颜色。使用
转载
2024-06-18 15:28:41
341阅读
总结了一些darknet代码使用的小技巧。技巧1 两种测试方法 进行测试有两种方法: 方式1:$ ./darknet detect cfg/yol
转载
2024-06-11 05:25:40
95阅读
关于“置信度Python”的整合与实现,本文将为您详细记录整个过程,涵盖环境准备、分步指南、配置详解、验证测试、优化技巧和排错指南。以下是实施的全面策略。
## 环境准备
为了顺利进行“置信度Python”的应用,我们首先需要准备开发环境和前置依赖。确保你的工作环境满足以下需求:
### 前置依赖安装
1. Python 3.x
2. NumPy
3. Pandas
4. Scikit-le