API:HOGDescriptor(Size _winSize, ---:窗口大小,即检测的范围大小,前面的64*128Size _blockSize,--- 前面的2*2的cell,即cell的数量,这里要填像素值Size(16,16)Size _blockStride,---每次block移动的步长,以像素计,为一个cell像素块大小Size _cellSize, ---cell的大小,前
转载 2018-10-02 20:27:00
304阅读
HOGDescriptor hogDescriptor = HOGDescriptor(); hogDescriptor.setSVMDetector(hogDescriptor.getDefaultPeopleDetector()); vector<Rect> vec_rect; hogDescr
转载 2018-10-05 09:50:00
218阅读
2评论
 Hog特征什么是Hog特征Hog特征属于特征的一种,因此也是一种计算结果。我们在【OpenCV14:Haar特征】中可以知道,Haar特征是由模板计算出来的结果,Hog特征与其不同的是,其在经过模板计算时更复杂,还需要进一步的运算。首先陈述一下如何计算Hog特征:1、模块划分         图1  如上图所示,白色底板作为一张
转载 2024-04-29 15:25:20
65阅读
SURF(Speeded Up Robust Features)特征关键特性:特征检测尺度空间选择不变性特征向量构建Hessian矩阵,生成
原创 2022-08-24 21:27:59
301阅读
HOG特征:方向梯度直方图(Histogram of Oriented Gradient,)特征是一种全局图像特征描述子。 它通过计算和统计图像局部区域的梯度方向直方图来构成特征Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行...
转载 2017-03-16 15:32:00
558阅读
2评论
1.读写图像#include <iostream> #include <string> #include <sstream> //OpenCV提供的跨平台I/O函数core和highgui //core用于基本的图像数据处理,包含基本类,比如矩阵 //highgui包含读函数、写函数以及用图形界面显示图像的函数 #include "opencv2/core.hp
参考文献:1、h
原创 2022-11-10 10:13:09
1391阅读
1、HOG特征:        方向梯度直方图(Histogram of Oriented Gradient, HOG特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。需
原创 2014-04-22 08:32:00
677阅读
function H=HOG(Im)nwin_x=3;%set here the number of HOG windows per bound boxnw
HOG
原创 2022-10-10 15:33:37
183阅读
本次模式识别课程要求实现路标检测,训练集只给了5个样本,测试集有50个样本,听说HOG特征+特征匹配就能达到很好的效果,因此采用了这种方法。在python-opencv里,有定义了一个类cv2.HOGDescriptor,使用这个类就可以直接提取图片的HOG特征。图片没有要求,3通道和单通道的我试一下结果一样。 网上关于这个类的介绍很少,翻了好多内容才找到了一部分。首先来看一下如何直接使用构造函数
1, hog特征总结
转载 2021-08-18 11:49:48
155阅读
方向梯度直方图(Histogram of Oriented Gradient, HOG特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员D
原创 2022-10-10 15:28:09
125阅读
1. HOG特征简介特征描述符是图像图像补丁的表示形式,它通过提取有用信息并丢弃无关信息来简化图像。通常,特征描述符将大小W x H x 3(通道)的图像转换为长度为n的特征向量/数组。对于 HOG 特征描述符,输入图像的大小为 64 x 128 x 3,输出特征向量的长度为 3780。在HOG特征描述符中,梯度方向的分布(直方图)被用作特征图像的渐变(x和y导数)很有用,因为边缘和角落(强度
转载 2024-04-12 03:46:13
58阅读
采用Python、numpy库实现图像HOG特征的提取,主要用于分析HOG特征的具体算法流程。 参考资料: HOG的经典论文:Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]//Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEE
转载 2023-07-05 10:38:31
174阅读
OpenCV图像处理学习十二——图像形状特征HOG特征一、图像特征理解1.1 颜色特征1.2 纹理特征1.3 形状特征1.4 空间关系特征二、形状特征描述2.1 HOG特征2.1.1 基本概念2.1.2 HOG实现过程2.1.3 代码实现 前面介绍了图像的基础知识、基本处理方法以及传统图像分割的应用,下面的笔记将介绍图像特征与目标检测部分的应用,知识脉络如下所示:一、图像特征理解图像特征是图
前言HOG特征的全称是Histograms of Oriented Gradients,基于HOG特征的人脸识别算法主要包括HOG特征提取和目标检测,该算法的流程图如下图所示。本文主要讲HOG特征提取。  HOG特征的组成Cell:将一幅图片划分为若干个cell(如上图绿色框所示),每个cell为8*8像素 Block:选取4个cell组成一个block(如上图红色框所示),每个bloc
hog是一个基于梯度的直方图提取算法,用于人体检测十分有效。在opencv2.2+版本里面已经实现。封装在HOGDescriptor类里。hog其实就是对一副图片的指定大小区域进行梯度统计。可以直接调用。opencv把它过于复杂化了,用的时候分什么window,block,cell啥的。。。一大堆东西。这里有三篇很好的文章介绍一下。这篇文章就是对window,block,cell的解释http:/
转载 2024-05-27 20:50:14
57阅读
HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极
转载 2018-05-14 16:42:00
212阅读
2评论
目前基于机器学习方法的行人检测的主流特征描述子之一是HOG(Histogram of Oriented Gradient, 方向梯度直方图)。HOG特征是用于目标检测的特征描述子,它通过计算和统计图像局部区域的梯度方向直方图来构成特征,用这些特征描述原始图像HOG的核心思想是所检测的局部物体外形能够被光强梯度或边缘方向的分布所描述。通过将整幅图像分割成小的连接区域(称为cells),每个cell
转载 2016-11-05 19:24:00
318阅读
前言 随着深度学习方法的流行,很多人对传统方法一无所知。然而传统方法仍然非常重要,这里介绍两个提取特征的传统方法--HOG和SIFT方法。如今,计算机视觉的应用在生活中已随处可见,如人脸识别考勤门禁、全态识别过闸乘地铁等。之所以能大量应用,是因为能解决问题,其本质原理是在数学上找到了一种从具体图像转换到特定数学空间的方法。这里的特定数学空间称为特征空间,该转换方法即为特征提取方法。常见的特征提取的
转载 2022-01-06 14:03:32
2146阅读
  • 1
  • 2
  • 3
  • 4
  • 5