HSV色彩空间讨论HSV色彩空间可以更加方便的通过色调,饱和度和亮度来感知颜色。色调H,在8位图像中要将值[0,360] 除以2 【0,180】。每个色调值对应一个色彩。例如0 代表红色。150代表品红。在上述基础上,通过分析各种不同对象对应的HSV值,便可以查找不同的对象。例如,通过分析得到肤色的HSV值,就可以直接在图像内更加肤色的HSV 来查找人脸(等皮肤)区域,,哇哦饱和度S:灰度饱和对0
转载 2024-01-25 13:37:51
1001阅读
一、Opencv颜色识别步骤:调用手机摄像头Opencv颜色处理存储色块图像和位置信息接下来主要介绍opencv颜色处理过程二、 Opencv图像处理思路创建滑动条:用来调节阈值,识别出不同颜色颜色空间转换:将RGB转换为HSV模型,于是可以通过不同颜色的HSV的阈值不同来识别出该种颜色Opencv中使用cvtcolor()可实现。一般彩色图像都是RGB颜色空间,而HSV色彩空间模型是一种在人
前置内容 RGB色彩空间是常见的色彩的空间,其他还有GRAY色彩空间、HSV色彩空间等等,它们都可以从不同的角度进行理解颜色。类比于数字10,它可以表示为二进制、八进制或者十六进制,以不同的规则来表示,都没有错误,但各个进制的计算必须按照各个进制的规则来执行,色彩空间同样如此,各个色彩空间之间可以相互转换,类比不同进制之间也可以进行转换。色彩空间基础GRAY色彩空间当图像从RGB色彩空间
一、图像原理1.1 三原色RGB(红绿蓝)是依据人眼识别颜色定义出的空间,可表示大部分颜色。但在科学研究一般不采用RGB颜色空间,因为它的细节难以进行数字化的调整。它将色调,亮度,饱和度三个量放在一起表示,很难分开。它是最通用的面向硬件的彩色模型。该模型用于彩色监视器和一大类彩色视频摄像。RGB颜色空间 基于颜色的加法混色原理,从黑色不断叠加Red,Green,Blue的颜色,最终可以得到白色。
看效果 下面源代码Object.h #pragma once #include <string> #include <cv.h> #include <highgui.h> using namespace std; using namespace cv; class Object { public: Object(); ~Object(void);
转载 2024-03-31 13:21:37
572阅读
关于特征子中经常用的的函数:findHomography,estimateRigidTransform关于opencv的特征描述子,我们需要了解DMatch与KPoints的数据结构,如下:DMatch结构体/* * Struct for matching: query descriptor index, train descriptor index, train image index an
转载 2024-03-15 15:42:35
283阅读
彩色模型数字图像处理中常用的采用模型是RGB(红,绿,蓝)模型和HSV(色调,饱和度,亮度),RGB广泛应用于彩色监视器和彩色视频摄像机,我们平时的图片一般都是RGB模型。而HSV模型更符合人描述和解释颜色的方式,HSV的彩色描述对人来说是自然且非常直观的。HSV模型HSV模型中颜色的参数分别是:色调(H:hue),饱和度(S:saturation),亮度(V:value)。由A. R. Smit
转载 2024-03-19 09:11:46
111阅读
最近开始接触图像处理,接到的首个任务就是将实验室用颜色标记好的数据再在原图上按不同颜色框出来,以在模型预测阶段检查预测效果。下面使用一张摇滚乐队Halestrom的图片进行说明。首先,我拿到的原图如下图所示: 图1 我们将原始图片按照人、地板、墙三种元素进行标记,得到下图: 图2 将上述两张图片输入我们的模型,那么模型能够做到给出一张新的图片它就能够输出一张按颜色
彩色模型数字图像处理中常用的采用模型是RGB(红,绿,蓝)模型和HSV(色调,饱和度,亮度),RGB广泛应用于
转载 2023-01-05 11:52:53
693阅读
1、准备数据集 正样本、负样本的图片比例为一比三左右; 在这里我为了实验就随手照了50张我鼠标的图片,不含鼠标的图片为150张; (注:这里的样本数我用的可能有点少,根据情况可进行调整) 2、数据集的处理: 在pycharm中新建python项目: test-opencv-train在该项目下新建python文件create_pos_neg()数据集的处理编程用opencv来实现,代码如下:# -
转载 2024-06-19 10:53:49
114阅读
1. 导语在之前的某个教程里,我们探讨了如何控制Pan/Tilt Servo设备来安置一个PiCam(树莓派的相机)。这次,我们将使用你的设备来帮助相机自动地跟踪某种颜色的物体,像下边的动图里那样:尽管这是我第一次使用OpenCV,但我必须承认,我已经爱上了这个“开源计算机视觉库”。OpenCV对学术用途和商业用途都免费。它有C++、C、Python和Java的接口,并且支持Windows、Lin
学习目标:利用python+opencv对某颜色范围进行识别准备工作: 1、 Pycharm 开发环境 2、 Python 3.8.3 3、 opencv4 HSV基本颜色分量范围程序说明:其目标是为了检测颜色为黄色的物体,然后对其质心和轮廓标注出来。 检测图像为下方(程序比较简单,主要流程为: Videocapture获取图像 --> set重置图像大小提高程序速度 --> cv
Opencv颜色识别1.以下是我的基本流程:读入图像图像转成HSV高斯滤波筛选需要识别颜色腐蚀操作找出轮廓画出轮廓接下来是我的总代码:import cv2 import numpy as np import re #颜色RBG取值 color = { "blue": {"color_lower": np.array([100, 43, 46]), "color_upper": np
转载 2023-08-19 23:56:19
556阅读
# 使用Python识别特定颜色 在计算机视觉和图像处理领域,颜色识别是一个非常重要的主题。它广泛应用于自动驾驶、图像分类、人脸识别等场景。本文将介绍如何使用Python库(如OpenCV)来识别特定颜色,并给出相关的代码示例,帮助读者理解这一过程。 ## 所需环境 在开始之前,确保已安装以下Python库: - OpenCV:用于图像处理。 - NumPy:用于矩阵和数组操作。 你可以
原创 10月前
262阅读
  邀请朋友在公众号上分享了一篇云台摄像头跟踪的教程。看了教程,跟着做了摄像头部分的功能,发现说的比较简洁,来具体分析一下。   这个颜色检测是在HSV颜色空间下进行的。首先把红色跟踪过程封装成函数,单独建个color_trace.py文件,代码如下:1 import cv2 2 import numpy as np 3 import imutils 4 5 def color_trac
转载 2023-07-16 19:13:08
295阅读
HSV颜色空间更容易表示一个特定颜色,通过opencv读取的图片为BGR颜色空间,我们利用cv2.cvtColor()可以轻松实现颜色空间的转变。 在函数之前,我们先大致了解一下HSV基本颜色分量范围(通过实验得到的模糊范围,实际操作中我们可以据此做出适当调整)。图片来自: 函数学习1. cv2.inRange(src, lowerb, upperb) 作用:官方解释
要用Python的OpenCV实现一个摄像头识别物料颜色,并将物料信息发送给树莓派,可以按照以下步骤进行:安装OpenCV和NumPy库 在命令行中输入以下命令安装OpenCV和NumPy库:pip install opencv-python numpy连接摄像头 将摄像头连接到电脑或树莓派,并确保能够使用OpenCV库访问它。采集图像并识别颜色 使用OpenCV库获取摄像头的图像,然后使用颜色
1.1彩色空间颜色是外来的光刺激作用于人的视觉器官而产生的主观感觉,它具有色调、饱和度和亮度三个特性。物体的颜色不仅取决于物体本身,还与光源、周围环境的颜色,以及观察者的视觉系统有关1.1.1颜色的基本特性1.光与颜色从根本上讲,光是人的视觉系统能够感知到的电磁波,其波长在380nm--780nm之间,正是这些电磁波使人产生了红、黄、蓝等颜色的感觉。光可由它的光谱能量分布p(λ)来表示 ,其中λ是
颜色识别的原理opencv中的颜色模型RGBRGB具有三个通道其,分别表示红色通道®,绿色通道(G),蓝色通道(B),3个通道在opencv中的取值均为0~255,它的颜色由3个通道的取值来共同决定,因此如果使用RGB图像来进行颜色识别,会丢失很多的颜色。HSVHSV具有三个通道,其分别表示色调(H),饱和度(S),亮度(V),3个通道在opencv中的取值分别如下:H:0~180S:0~255
所谓的颜色空间是指,针对一个给定的颜色,我们如何组合颜色元素以对其编码。即把颜色分成几个基元素,通过组合基元素可以产生所有的颜色。RGB是最常用的一种颜色空间,因为它的原理和我们人眼的内部构成颜色的方式相同,通过基色 R(红色),G(绿色),B(蓝色),有时候还会有表示颜色透明度的(A)。HSV由一个圆锥组成,下顶点为黑色,上顶圆的中心点为白色。 H:色调,用角度度量,取值范围为0°~360°,从
  • 1
  • 2
  • 3
  • 4
  • 5