首先说明,本人也像大家一样,新手。都是网上找博客跟着人家边学边做,对人脸识别所知甚少。网上学习了一段时间后,对人脸识别的实现,所知的大概如下: 需安装以下环境: opencv-3.2.0 + opencv_+contrib-3.2.0 一、数据准备---采集人脸图像并预处理,建立自己的人脸库     &nb
转载 2024-03-25 06:16:40
60阅读
本文主要演示Dlib在windows环境下利用VS配置环境运行成功调用摄像头的实时人脸特征点提取以及轮廓的描绘。 ///软件资源 Dlib下载链接: //官网链接 http://dlib.net //但最新版的dlib用VS2015会报一个很奇葩的错误,故而推荐上面的下载链接 人脸库下载链接:http://dlib.net/files/shape_
最近一直在忙课程,老师让我看看他的论文也没放在心上。总算闲下来,看了他在人脸识别方面的相关论文,拿出一篇放在博客上跟大家共同分析下。在看以下内容前,首先要阅读下徐勇老师的这篇论文A Two-Phase Test Sample Sparse Representation Method for Use With Face Recognition;当前人脸识别方面最热的方法就是稀疏表示方法(sparse
转载 2024-07-28 16:25:30
50阅读
OpenCV C++案例实战二十三《网孔检测》前言一、HSV通道转换二、图像修复2.1 OpenCV函数实现2.2 MyFunction三、轮廓提取四、效果显示五、源码总结 前言前段时间,有位粉丝私信我,给我发了一张图片,如下图所示: 在这里贴出他的原话。 从他给的图片分析,该图存在遮挡,所以不能简单的二值化,然后提取图像轮廓去寻找结果。所以,我就想如何去掉这些遮挡物(即图像修复)。从图像可知,
什么是轮廓?  轮廓可以简单认为成连续的点(连着边界)连在一起的曲线,具有相同的颜色或者灰度。轮廓在形状分析和物体的检测和识别中很有用。谈起轮廓不免想到边缘,它们确实很像。简单的说,轮廓是连续的,边缘并不全都连续(下图)。其实边缘主要是作为图像的特征使用,比如可以用边缘特征可以区分脸和手,而轮廓主要用来分析物体的形态,比如物体的周长和面积等,可以说边缘包括轮廓。为了准确,要使用二值化图像
/* Hu轮廓匹配: #include "Opencv_MatchShape.h" #include "Match_Shape_NCC.h" int main(int argc, char* argv) { Opencv_MatchShape demo; demo.MatchShape_HU(); system("pause"); return 0; } */ #include <io
转载 2023-12-14 19:13:44
55阅读
 一、什么是层次结构通常我们使用函数cv.findContours()在图片中查找一个对象。有时对象可能位于不同的位置。还有一些情况,一个形状在另外一个形状的内部。这种情况下我们称外部的形状为父,内部的形状为子。按照这种方式分类,一副图像中的所有轮廓之间就建立父子关系。  让我们来看一个简单的例子: 在这个图中,我给这几个形状编号为0-5,2和2a分别代表最
转载 2023-11-02 10:42:23
106阅读
文章目录一、寻找轮廓findContours()1.要层次hierarchy2.不要层次hierarchy3.轮廓就是点集二、绘制轮廓drawContours()三、寻找凸包四、使用多边形1.外部矩形边界boundingRect()2.寻找最小包围矩形minAreaRect()3.寻找最小包围圆形minEnclosingCircle()4.用椭圆拟合二维点集fitEllipse()5.逼近多边形
转载 2024-04-27 10:28:29
974阅读
一、OpenCV中的轮廓 图像的上半部分是一张白色背景上的测试图像,包含了一系列标记 A 到 E的区域。寻找到的轮廓被标记为 cX 或 hX, 其中c 代表 “轮廓(contour)”,h 代表 “孔(hole)”(也可以理解为内轮廓)。 同样,左图是原始图片,右图是寻找到的轮廓,它也采用了类似的标注方法。 二、函数调用细节 寻找轮廓的主要函数是 cv::
转载 2024-08-29 16:09:38
311阅读
目录一、轮廓的绘制的作用二、内容介绍三、代码实现一、轮廓的绘制的作用用于图形分析和处理:轮廓是图像中物体边界的描绘,通过绘制轮廓,我们可以更好地分析和理解图像中的物体和形状。例如,轮廓可用于识别和区分不同的对象、测量物体的面积和周长等。辅助机器视觉和物体识别:轮廓可以帮助计算机视觉系统(如机器人、自动驾驶车辆等)更好地识别和理解其环境。例如,通过轮廓,系统可以识别出不同的人、物体或道路标志。特征提
轮廓特征目标查找轮廓的不同特征,例如面积,周长,重心,边界框等。你会学到很多轮廓相关函数矩   图像的矩可以帮助我们计算图像的质心,面积等。详细信息请查看维基百科Image Moments。   函数 cv2.moments() 会将计算得到的矩以一个字典的形式返回。如下:# -*- coding: utf-8 -*- """ Created on Sun Jan 12 18:30:17 2014
一、概述  使用发现并绘制轮廓比较简单,只需要调用findContours和drawContours两个方法就行了,但前提是要对图像做一下预处理。  实现步骤如下:  1.将原图转换为灰度图像  2.执行二值分割  3.去除无用的噪声  4.发现轮廓  5.绘制轮廓  6.展示轮廓图二、示例代码  Mat src = imread(inputImagePath); imshow("原始图"
转载 2023-06-30 23:56:28
421阅读
目标了解轮廓是什么。学习查找轮廓,绘制轮廓等。 cv2.findContours(),cv2.drawContours() 什么是轮廓?轮廓可以简单地解释为连接具有相同颜色或强度的所有连续点(沿边界)的曲线。轮廓是用于形状分析以及对象检测和识别的有用工具。为了获得更高的准确性,请使用灰度图像。因此,在找到轮廓之前,请应用阈值或canny边缘检测从OpenCV 3.2开始,cv2.findConto
转载 2024-02-19 18:51:03
197阅读
OpenCV 轮廓基本特征  分类: OpenCV(35)  一、概述       我们通过cvFindContours( )函数获取得图像轮廓有何作用呢?一般来说,我们对轮廓常用的操作有识别和处理,另外相关的还有多种对轮廓的处理,如简化或拟合轮廓,匹配轮廓到模板,等等。
文章目录轮廓检测1.1轮廓检测的作用:1.2方法1.3轮廓特征1.4轮廓近似1.5边界矩阵 轮廓检测1.1轮廓检测的作用:可以检测图图像或者视频中物体的轮廓计算多边形边界,形状逼近和计算感兴趣区域1.2方法为了更精确地提取轮廓,请使用二值图。也就是说,在使用轮廓提取函数前,请将源图片运用阈值进行二值化(cv2.threshold())或者采用Canny边缘检测。findContours 函数会修
凸包基本概念凸包(Convex Hull)是一个计算机几何图形学中的概念, 简单来说, 给定二维平面点集, 凸包就是能够将最外层的点连接起来构成的凸多边形, 它能够包含点集中所有的点。物体的凸包检测场应用在物体识别、手势识别及边界检测等领域。寻找凸包—convexHull()函数原型points: 输入的二维点集, 可以填Mat类型或std::vectorhull: 函数调用后找到的凸包clock
转载 2024-07-31 12:21:18
50阅读
凸包(Convex Hull)是一个计算几何中常见的概念,简单来说,给定二维平面上的点集,凸包就是将最外层的点连接起来构成的凸多边形,它能包含点集中所有点,理解物体形状轮廓的一种比较有用的方法便是计算一个物体的凸包,然后计算其凸缺陷。很多复杂物体的性能能被这种缺陷表示出来 #一、寻找轮廓:findContours()函数 一个轮廓一般对应着一系列的点,也就是图像中的一条曲线,在OpenCV中,可以
 针对物体轮廓opencv还提供了一些相关的函数,来处理轮廓查找,绘制,拟合,以及计算轮廓周长和面积等,详细介绍如下:1. 寻找和绘制轮廓  opencv的findContours()能寻找图片中的轮廓,实现的是下面论文的算法:Computer Vision, Graphics, and Image Processing, 30(1):32–46, 1985.  函数对应的参数如下:c
转载 2023-07-23 22:36:05
248阅读
引言:数字图像处理中,检测图像中的局部特征信息是比较重要的一部分,因为我们有时候并不是对整张图像都感兴趣,只是想要提取到图像中的一部分信息,比如车牌识别,对于整张图像来说,我们感兴趣的是只是车牌这一部分,其他的信息都是多余的。所以,有没有什么办法能够帮助我们实现提取局部信息的方法呢,opencv库中封装好了一些方法,我们只需要调用这些方法就可以实现我们的目的。我们还是先讲函数的意思,然后加以实践来
目标了解轮廓是什么。学习查找轮廓,绘制轮廓等。你将看到以下功能:cv.findContours(),cv.drawContours()什么是轮廓? 轮廓可以简单地解释为连接具有相同颜色或强度的所有连续点(沿边界)的曲线。轮廓是用于形状分析以及对象检测和识别的有用工具。 为了获得更高的准确性,请使用二进制图像。因此,在找到轮廓之前,请应用阈值或canny边缘检测。从OpenCV 3.2开始
转载 2023-11-13 15:28:06
62阅读
  • 1
  • 2
  • 3
  • 4
  • 5