在本文中,我将带您完成用 Python 进行机器学习的年龄和性别检测的任务。年龄和性别检测属于计算机视觉的范畴,因此我将在Python中使用OpenCV库。
转载 2021-07-16 14:45:06
243阅读
当需要使用高版本的vs编译低版本的opencv时可能会出现一些奇奇怪怪的错误,这时可以尝试手动编译生成opencv库文件来进行适配。编译OpenCV:opencv3.4.0源码下载地址这里可以选择其它版本:下载解压后得到opencv-3.4.0文件夹打开CMake(CMake安装方法自行百度)点击Configure选择目标编译器,这里我选择vs2022点击Finish后可能需要等待一段时间,完成后
# Python人脸检测年龄估计 在人脸识别技术的迅速发展下,年龄估计成为了计算机视觉领域的重要应用之一。这一技术不仅可以用于安全监控、社交媒体以及市场营销等多个领域,还能为人们的生活带来便利。本文将介绍如何使用Python实现人脸检测年龄估计,并提供代码示例。 ## 基础知识 人脸检测是指在图像中自动识别出人脸所在的位置,而年龄估计则是在检测出的人脸周围,分析并预测该人脸的年龄。现有多
原创 8月前
175阅读
IST = ["(0-2)", "(4-6)", "(8-12)", "(15-...
转载 2020-05-10 18:43:15
655阅读
1.研究背景计算机视觉作为计算机学科的一大分支,在近些年的发展十分迅速。图像识别也从最开始进行简单的数字和形状识别发展到了现在对各种复杂物体的识别。其中我们最熟悉的便是计算机对于人脸的识别,近些年大数据和深度学习网络的高速发展,给人脸的识别提供了极佳的发展环境,加上越来越多的开源数据库的成立,对于人脸识别的研究在近几年达到高潮。 人脸年龄识别是人脸识别问题的一个子集,人脸的年龄估计有比较广泛的应用
一、前言物体检测分类是一种机器学习任务,旨在识别图像或视频中的物体,并将其分为不同的类别。与传统的物体分类任务不同,物体检测分类不仅可以确定图像中物体的类别,还可以确定它们在图像中的位置和边界框。物体检测分类通常涉及以下步骤:数据收集和标注:收集包含不同类别物体的图像或视频数据,并进行标注,标注包括每个物体的类别和边界框信息。特征提取:使用图像处理和计算机视觉技术,从收集的图像中提取有用的特征。这
Haar级联由于灯光、视角、视距、摄像头抖动以及数字噪声的变化,一个图像的细节可能会变得不稳定。但是人们在分类时却不会受这些物理细节方面差异的影响。因此,提取出图像的细节对产生稳定分类结果和跟踪结果很有用。即:从图像中提取特征。虽然任意像素都可能影响多个特征,但特征应该比像素数少得多。由此两个图像的相似程度可以通过它们对应特征的欧氏距离来度量。类Haar特征是一种用于实现实时人脸跟踪的特征。每个类
一、介绍照片中的面部分析引起了人们的广泛关注,因为它可以帮助我们解决各种问题,包括更好的们是此类...
首先感谢虹软,是你们提供这么好的SDK支撑了我们的想象力!这是一个用javav编写的可视化应用,用户通过自己的脸和计算机进行交互,计算机则通过萌萌女孩的语音和用户对话。核心程序就是利用ArcFace2.0识别性别、年龄,但是为了获得正面脸,会根据ArcFace2.0的人脸3D角度、用语音提醒用户,这是一个的互动环节。最后,程序会幽默的、萌萌的告诉用户他的性别、年龄。获取SDK 请戳这里完整的项目源
转载 2024-08-02 09:08:47
54阅读
文章目录前言一、函数介绍1、HoughLinesP2、HoughCircles3、findContours4、 drawContours二、演示1、GUI2、代码实现总结 前言越来越多的开发人员选择基于开源的Qt框架与OpenCV来实现界面和算法,其原因不单单是无版权问题,更多是两个社区的发展蓬勃,可用来学习的资料与例程特别丰富。以下是关于利用Qt构建GUI并使用OpenCV中的HoughLin
转载 2024-08-21 14:01:04
201阅读
本文将向大家介绍如何使用OpenCV库进行坑洼检测。为什么要检测坑洼?坑洼是道路的结构性指标,事先发现坑洼地可以延长高速公路的使用寿命,防止事故的发生,同时降低死亡率。一种可行的解决方案是构建自动坑洞检测系统,该系统可通过云服务发送实时信息以提醒管理结构,来杜绝每天人工检查所产生的不必要花费。OpenCV是一个帮助研究人员处理图像问题的库,该库提供了大量处理图像的方法。OpenCV的使用将有助于坑
在调度系统中牵扯到对调度数据结构的有向环进行检测,所以使用DFS算法来检测组装形成的调度数据结构不存在无限循环结构,记录分享DFS如何检测环的。举个栗子 栗子 转换 为临接矩阵可以转化为数据问题: 矩阵表示 根据深度优先搜索,我们这里默认按行进行遍历,对于第一行,起始节点就是第一行对应到那个元素0,遍历到第二个元素时发现不为0,则节点0可以到达节点1;接着以节点1作为中转点,遍
物体尺寸测量的思路是找一个确定尺寸的物体作为参照物,根据已知的计算未知物体尺寸。如下图所示,绿色的板子尺寸为220*300(单位:毫米),通过程序计算白色纸片的长度。目录1、相关库2、读图+图片预处理3、寻找轮廓4、找到参照物的轮廓,并且进行图像矫正5、结束 完整代码:实时实现物体尺寸计算代码: 1、相关库opencv-python==4.2.0.34numpy==1.21.6
转载 2023-07-16 19:28:43
423阅读
1点赞
直线检测直线检测可以通过OpenCV的HoughLines和HoughLinesP函数来完成,它们仅有的差别是:第一个函数使用标准的Hough变换,第二个函数使用概率Hough变换,即只通过分析点的子集并估计这些点都属于一条直线的概率,这在计算速度上更快。函数原型:HoughLinesP(image, rho, theta, threshold, lines=None, minLineLength
转载 2023-12-27 21:31:33
347阅读
环境:Python3.8 和 OpenCV内容:Hough圆检测将直角坐标系中的一个圆映射为新坐标系中的一个点,对于原直角坐标系中的每一个圆,可以对应(a, b, r) 这样一个点,这个点即为新三维中的点。标准法实现步骤: 1.获取原图像的边缘检测图像;2.设置最小半径、最大半径和半径分辨率等超参数;3.根据转化后空间的圆心分辨率等信息,设置计数器N(a, b, r);4.对边缘检测图像的每个白色
转载 2023-12-02 21:01:28
344阅读
1、Opencv DNN1.1 opencv DNNOpenCV DNN githubDeep Neural Networks (dnn module)(opencv dnn 教程)TensorFlow Object Detection APIROS工程不使用ROS自带的OpenCVhttps://github.com/Smorodov/Multitarget-trackerhttps://git
转载 2024-05-22 22:22:48
80阅读
基于内容的图像分析的重点是提取出图像中具有代表性的特征,而线条、轮廓、块往往是最能体现特征的几个元素,这篇文章就针对于这几个重要的图像特征,研究它们在OpenCV中的用法,以及做一些简单的基础应用。一、Canny检测轮廓在上一篇文章中有提到sobel边缘检测,并重写了soble的C++代码让其与matlab中算法效果一致,而soble边缘检测是基于单一阈值的,我们不能兼顾到低阈值的丰富边缘和高阈值
转载 2024-02-23 11:41:48
248阅读
文章目录单张人脸关键点检测单张图像人脸检测摄像头实时关键点检测 单张人脸关键点检测定义可视化图像函数 导入三维人脸关键点检测模型 导入可视化函数和可视化样式 读取图像 将图像模型输入,获取预测结果 BGR转RGB 将RGB图像输入模型,获取预测结果 预测人人脸个数 可视化人脸关键点检测效果 绘制人来脸和重点区域轮廓线,返回annotated_image 绘制人脸轮廓、眼睫毛、眼眶、嘴唇 在三维坐
转载 2024-03-19 08:31:40
87阅读
简介  OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows、Android和Mac OS操作系统上。它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。   OpenCV的官方网址为:https://opencv.org/, 其Gi
转载 2024-04-22 14:45:26
104阅读
一、概念运动侦测,英文翻译为“Motion detection technology”,一般也叫移动检测,常用于无人值守监控录像和自动报警。通过摄像头按照不同帧率采集得到的图像会被CPU按照一定算法进行计算和比较,当画面有变化时,如有人走过,镜头被移动,计算比较结果得出的数字会超过阈值并指示系统能自动作出相应的处理。—–百度百科差分算法差分检测根据当前图像与参考图像的差别分析来判断序列图像中是否有
  • 1
  • 2
  • 3
  • 4
  • 5