文章目录四、图像的算术与位运算1、算术运算1.1 加法1.2 减法1.3 乘法1.4 除法2、图像的融合3、位运算3.1 非3.2 与3.3 或3.4 异或4、制作LOGO 四、图像的算术与位运算1、算术运算图像的算术运算包含:图像的加法运算、图像的减法运算、图像的乘法运算以及图像的除法运算,下面将一一介绍。1.1 加法OpenCV使用 add() 来执行图像的加法运算,add() 用法如下所示
在尽量保留原图像信息的情况下,去除图像内噪声、降低细节层次信息等一系列过程,叫作图像的平滑处理(或图像的模糊处理)。实现平滑处理最常用的工具就是滤波器。通过调节滤波器的参数,可以控制图像的平滑程度。OpenCV提供了种类丰富的滤波器,每种滤波器使用的算法均不同,但都能对图像中的像素值进行微调,让图像呈现平滑效果一、均值滤波器图像中可能会出现这样一种像素,该像素与周围像素的差别非常大,导致视觉上就能
K均值聚类算法在cxcoer中,因为它在ML库诞生之前就存在了.K均值尝试找到数据的自然类别.用户设置类别个数,K均值迅速地找到"好的"类别中心."好的"意味着聚类中心位于数据的自然类别中心.K均值是最常用的聚类计数之一,与高斯混合中的期望最大化算法(在ML库中实现为CvEM)很相似,也与均值漂移算法(在CV库中实现为cvMeanShift())相似.K均值是一个迭代算法,在OpenCV中采用的是
图像滤波均值滤波import cv2
import matplotlib.pyplot as plt
import numpy as np
# 读入带噪点的图像
img=cv2.imread("img/lenaNoise.png")
cv2.imshow('img',img)
cv2.waitKey(0)
# 均值滤波
# 简单的平均卷积操作 指定两个参数 img 原图像 (3,3)核大小
#
用图片拼接实例熟悉CV图像(矩阵)操作(1)我们的目标是:使用代码把两张图片拼接在一起 本节内容A:OpenCV视角下的图片 本节内容B:OpenCV处理图像的Class图片数据容器OpenCV习惯将图片数据加载到类cv::Mat中,通过Mat的member Function或者以Mat为处理对象的算法进行图像处理。如上图所示,模板类Mat支持多种数据类型。OpenCV的官方文档中给出了Mat的m
直方图直方图简单来说就是图像中每个像素值的个数统计,比如说一副灰度图中像素值为0的有多少个,1的有多少个……直方图是一种分析图像的手段:直方图计算opencv库计算直方图使用 cv.calcHist(images, channels, mask, histSize, ranges) 计算,其中: 参数1:要计算的原图,以方括号的形式传入,如:[img] 参数2:选择图像的某个通道,计算直方图,灰度
0、算子描述算子接受一个旋转矩形作为ROI(兴趣区域),接受一个或者多个旋转矩形作为Masks(掩膜,掩膜遮蔽的像素不计入算子计算),所以有效检测区域为ROI减去Masks。计算有效检测区域内的像素平均值。将该像素平均值与参考值进行比较,若该像素平均值落与参考值的上下限百分比内,则算子返回true,否则返回false。注:所有ROI和mask的位置和角度都是相对于原图的图像坐标的。1、解决思路使用
为什么要使用滤波消除图像中的噪声成分叫作图像的平滑化或滤波操作。信号或图像的能量大部分集中在幅度谱的低频和中频段是很常见的,而在较高频段,感兴趣的信息经常被噪声淹没。因此一个能降低高频成分幅度的滤波器就能够减弱噪声的影响。 如下图,左图带有椒盐噪声,右图为使用中值滤波处理后的图片。 图像滤波的目的有两个:一是抽出对象的特征作为图像识别的特征模式;另一个是为适应图像处理的要求,消除图像数字化时所混入
前面说了K-Means聚类算法,这里我们介绍一种新的聚类算法:MeanShift, 它常被用在图像识别中的目标跟踪,数据聚类、分类等场景,前者的核函数使用了Epannechnikov核函数,后者使用了Gaussian(高斯核函数) 一 算法的原理理解:1 核函数在Mean Shift算法中引入核函数的目的是使得随着样本与被偏移点的距离
本章中我们学习一下通过backproject直方图,得到一副图像中每个像素属于该直方图的概率。在下边原始图中(左图),我们框选了一块四边形的区域,计算该区域的灰度直方图,然后通过下面的函数calcBackProject,计算图像src中每个像素在直方图中的概率,最终的结果在result中,result中每个像素表示该像素在直方图中的概率
图像拼接Stitch模块算法流程与代码使用介绍拼接算法OpenCV从2.4.x版本之后多出来一个新的模型 图像拼接,该模块通过简单的高级API设置,可以获得比较好的图像拼接效果,OpenCV官方提供了一个高度集成的API函数 Stitcher,只要两行代码就可以得到一个很好的拼接图像。Ptr<Stitcher> stitcher = Stitcher::create(mode
转载
2022-07-28 09:41:31
616阅读
图像拼接Stitch模块详解与代码演示
转载
2022-01-06 14:22:58
594阅读
图像拼接Stitch模块详解与代码演示
转载
2021-07-15 11:40:26
2168阅读
拼接算法
OpenCV中从2.4.x版本之后多出来一个新的模型 图像拼接,该模块通过简单的高级API设置,可以获得比较好的图像拼接效果,OpenCV官方提供了一个高度集成的API函数 Stitcher,只要两行代码就可以得到一个很好的拼接图像。
1 Ptr<Stitcher> stitcher = Stitcher::create(mode);
2 Stitcher::Status
转载
2020-12-23 14:59:00
365阅读
2评论
1、均值滤波任意一点的像素值,都是周围N*N个像素值的均值如上图是一个图片的像素分布,红色区域226,红色可以作为周围NN个像素的均值 例:选取55的区域,红色区域的像素新值=蓝色背景区域像素值之和除25中间部分称为:核。每一个都是1/25, 核根据要取多少N*N决定 针对原始图像内的像素点,逐个采用核进行处理,得到结果图像. 使用函数:处理结果=cv2.blur(原始图像,核大小) 处理结果=c
图像处理 目录图像处理图像阈值图像平滑均值滤波方框滤波高斯滤波中值滤波形态学操作腐蚀操作膨胀操作开运算闭运算梯度运算礼帽运算黑帽运算图像梯度算子Sobel算子scharr算子Laplacian算子总结 图像阈值图像阈值分割是一种广泛应用的技术,利用图像中要提取的目标区域与其背景在灰度特性上的差异,把图像看作具有不同灰度级的两类区域的组合(目标区域和背景区域),选取一个合理的阈值,从而选取目标区域,
用于笔记,侵删直方图直方图简单来说就是图像中每个像素值的个数统计,比如说一副灰度图中像素值为0的有多少个,1的有多少个……直方图是一种分析图像的手段:直方图计算opencv库计算直方图使用 cv.calcHist(images, channels, mask, histSize, ranges) 计算,其中: 参数1:要计算的原图,以方括号的形式传入,如:[img] 参数2:选择图像的
OpenCV与图像处理学习十一——分水岭算法(含代码)一、分水岭算法概要二、分水岭算法步骤三、代码应用 一、分水岭算法概要任意的灰度图像可以被看做是地质学表面,高亮度的地方是山峰,低亮度的地方是山谷。 给每个孤立的山谷(局部最小值)不同颜色的水(标签),当水涨起来,根据周围的山峰(梯度),不同的山谷也就是不同的颜色会开始合并,要避免山谷合并,需要在水要合并的地方建立分水岭,直到所有山峰都被淹没,
【前言】图像预处理对于整个图像处理任务来讲特别重要。如果我们没有进行恰当的预处理,无论我们有多么好的数据也很难得到理想的结果。 本篇是视觉入门系列教程的第二篇。整个视觉入门系列内容如下:理解颜色模型与在图像上绘制图形(图像处理基本操作)。基本的图像处理与滤波技术。从特征检测到人脸检测。图像分割与分水岭(Watershed)算法(TBU)在边缘和轮廓检测中,噪声对检测的精度有很大的影响。因此
图像通过一定尺寸的矩阵表示,矩阵中每个元素的大小表示图像中每个像素的明暗程度。查找矩阵中的最大值就是寻找图像中灰度值最大的像素,计算矩阵的平均值就是计算图像像素的平均灰度,可以用平均灰度表示图像整体的亮暗程度。因此,针对图像矩阵数据的统计和分析,在图像处理工作中具有非常重要的意义。OpenCV集成了求取图像像素最大值、最小值、均值、标准差等函数,本节将详细介绍这些函数的使用方法。OpenCV提供了