九层之台,起于累土;千里之堤毁于蚁穴;成者半于九十。最近工程项目完全可以调试,却最后在 OpenCV向JNI层的参数转换 这个节点上遇到麻烦,看来得好好的思考一番,仔细寻找其中的纰漏。一、实例        根据可运行的op
转载 2024-10-14 10:04:00
88阅读
    在计算机术语中,并行性是指:把一个复杂问题,分解成多个能同时处理的子问题的能力。要实现并行计算,首先我们要有物理上能够实现并行计算的硬件设备,比如多核CPU,每个核能同时实现算术或逻辑运算。    通常,我们通过GPU实现两类并行计算:     任务并行:把一个问题分解为能够同时执行的多个任务。   
第三章并行计算机的体系结构第3章 并行计算机的体系结构了解并行计算机的体系结构是开展并行计算研究的基础。为了设计一个高效率的并行算法,实现一个高效率的并行程序,需要对并行计算机体系结构有一定的了解。本章从入门角度介绍组成并行计算机的各个部分,力争使得读者对并行计算机有一个初步的认识,为深入学习并行算法的设计和并行程序的编制奠定基础。当前,并行计算机的组成主要有三个要素:如图3.1 和图3.2 所示
项目需要,正好遇到了parallel_for_()函数。发现其强大之处,特此记录一下。对原blog做一定的细节补充和详细介绍。转载自:“OpenCV 从2.4.3开始加入了并行计算的函数parallel_for和parallel_for_(更准确地讲,parallel_for以前就存在于tbb模块中,但是OpenCV官网将其列在2.4.3.的New Features中,应该是重新改写过的)。2.4
把大的,复杂的任务分解成多个小任务,并行的处理,待所有线程结束后,返回结果。/** * 并行框架 * @author Administrator * */ public class Executer { //存储任务的执行结果 private List<Future<Object>> futres = new ArrayList<Future<Obj
转载 2023-07-06 11:34:41
988阅读
## 实现Java并行计算的流程 在介绍具体的实现步骤之前,首先需要了解一下Java并行计算的概念和流程。Java并行计算是指将一个大任务分解为多个小任务,并同时在多个处理器上执行这些小任务,以提高计算效率和性能。 下面是实现Java并行计算的一般流程: 1. 将大任务分解为多个小任务。 2. 创建一个线程池,用于管理并发执行的任务。 3. 将小任务提交给线程池进行并发执行。 4. 等待所有
原创 2023-08-05 14:36:40
189阅读
计算机的并行处理技术概括起来主要有以下三种形式:1.时间并行  时间并行指时间重叠,在并行性概念中引入时间因素,让多个处理过程在时间上相互错开,轮流重叠地使用同一套硬件设备的各个部分,以加快硬件周转而赢得速度。  时间并行性概念的实现方式就是采用流水处理部件。这是一种非常经济而实用的并行技术,能保证计算机系统具有较高的性能价格比。目前的高性能微型机几乎无一例外地使用了流水技术。2.空间并行  空
Python并行计算的优越性——提高计算效率的最佳选择对于许多计算机科学家和数据科学家来说,提高计算效率一直是最热门的话题之一。并行计算是一种技术,可以用来加速计算过程,使其更加高效、快速。在众多的编程语言中,Python是最受欢迎的之一。在Python中,有着一些非常优秀的并行计算库,可以帮助程序员们更加容易地实现并行计算,提高计算效率。下面我们一起来探讨一下Python的并行计算库。什么是并行
1 什么是并行计算?串行计算: 传统的软件通常被设计成为串行计算模式,具有如下特点:一个问题被分解成为一系列离散的指令;这些指令被顺次执行;所有指令均在一个处理器上被执行;在任何时刻,最多只有一个指令能够被执行。 并行计算: 简单来讲,并行计算就是同时使用多个计算资源来解决一个计算问题:一个问题被分解成为一系列可以并发执行的离散部分;每个部分可以进一步被分解成为一系列
1.计算科学与并行计算的提出    随着计算机和计算方法的飞速发展,几乎所有的学科都走向定量化和精确化,从而产生了一系列诸如计算物理、计算化学、计算生物学、计算地质学、计算气象学和 计算材料科学等的计算科学,在世界上逐渐形成了一门计算性的学科分支,即计算科学与工程,简称为CSE(Computational Science & Engineering)。当今,
python的multiprocessing包是标准库提供的多进程并行计算包,提供了和threading(多线程)相似的API函数,但是相比于threading,将任务分配到不同的CPU,避免了GIL(Global Interpreter Lock)的限制。下面我们对multiprocessing中的Pool和Process类做介绍。Pool采用Pool进程池对任务并行处理更加方便,我们可以指定并
1.为什么需要并行计算来排序对于大型互联网应用中经常面临对上亿大数据的排序处理等需求,并且上亿大数据量的排序处理能力也是检验分布式系统的计算能力的经典指标之一。通常在单台计算机上的排序算法有插入排序、快速排序、归并排序、冒泡排序、二叉树排序等等。但是如果是上亿规模的数据,也就是大概G以上数量级的排序。超出了单台计算机内存和CUP的能力,实现起来很困难。为了实现上亿的大数据量快速排序,需要考虑利用多
原创 2022-12-06 09:06:26
492阅读
主要并行计算机类型:并行向量机– Parallel Vector Processor对称多处理机– Symmetric Multiprocessor大规模并行处理机– Massively Parallel Processor分布共享存储多处理机– Distributed Shared Memory集群或集群系统– Cluster,Cluster of Workstation并行方式:数据并行(分解
原创 2015-03-03 22:11:02
844阅读
 20世纪60年代初期, 由于晶体管以及磁芯存储器的出现, 处理单元变得越来越小, 存储器也更加小巧和廉价。这些技术的发展促进了并行计算机的产生。到80年代蓬勃发展和百家争鸣,再到90年代体系结构框架趋于统一,并行计算机得到突破性的发展。现代计算机的发展历程可以分为2个时代:串行计算时代和并行计算时代。并行计算是在串行计算的基础上发展起来的。并行计算将一项大规模的计算任务交由一组相同的处
并行计算(Parallel Computing)是指同时使用多台计算机协同合作解决计算问题的过程,其主要目的是快速解决大型且复杂的计算问题。  图1:计算原理 并行计算是相对于串行计算——即在单个计算机(具有单个中央处理单元)上执行的操作,所提出的。具体的说,并行计算是在多台(并行)计算机上将一个应用任务分解成多个子任务,分配给不同的处理器,各个处理器之间相互协同,同时执行子任务的过
Spark1、简介2、四大特性2.1 高效性2.2 易用性2.3 通用性2.4 兼容性3、生态架构3.1 Spark Core3.2 Spark Streaming3.3 Spark SQL3.4 Spark MLlib3.5 GraphX4、运行模式 1、简介Apache Spark是一个开源的、强大的、分布式的并行计算框架,是一个实现快速通用的集群计算平台,用于大规模数据处理的统一分析引擎。
转载 2023-08-10 09:56:46
363阅读
目录在了解什么是cuda之前,需要先知道什么是gpu;OK,那么GPU有哪些特性呢?OK,那么什么是CUDA呢?那这里为什是异构计算呢?最后让我们用一个CUDA C的hello world来结束这篇blog。在了解什么是cuda之前,需要先知道什么是gpu; GPU这个概念是由Nvidia公司于1999年提出的。GPU是显卡上的一块芯片,就像CPU是主板上的一块芯片。那么1999年之前显
python并行运算库 HiPlot is Facebook’s Python library to support visualization of high-dimensional data table, released this January. It is particularly well known for its sophisticated interactive paralle
摘要:在计算机术语中,并行性是指:把一个复杂问题,分解成多个能同时处理的子问题的能力。要实现并行计算,首先我们要有物理上能够实现并行计算的硬件设备,比如多核CPU,每个核能同时实现算术或逻辑运算。 一、并行计算概述(Introduction to Parallel Computing)把一个复杂问题,分解成多个能同时处理的子问题的能力。要实现并行计算,首先我们要有
转载 2023-08-30 20:09:30
75阅读
摘要:针对像素级图像处理算法并行化程度高的特点,利用GPU的并行流处理特性和可编程性,提出了基于GPU的数字图像并行化处理方法,并对其基本执行流程和其中的关键技术问题:数据加载,结果反馈、保存等进行了详细论述。最后通过图像的卷积运算验证了GPU的并行处理能力。关键词:GPU;片元程序;Cg;并行处理GPU并行化处理GPU)是目前计算机上普遍采用的图形图像处理专用器件,具有单指令流多数据流(SIMD
转载 2023-10-12 05:55:49
13阅读
  • 1
  • 2
  • 3
  • 4
  • 5