CNT简介CNT算法是OpenCV Contrib 模块中的背景减除(Background segment)算法之一。相较于OpenCV提供的其他背景减        除算法,该算法具有运行速度快,检测精度高等优点。因此背景减除系列文章第一篇就先讲一下这个算法。因为CNT并没有任何参考论文,故而只能根据OpenCV的源码来进行分析。后面首先介绍OpenCV中该算法如何使用,然后再根据源码对算法进行            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-04-26 17:30:01
                            
                                324阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            基于平均背景法的背景提取。首先我们得明白,一幅图像中什么属于背景什么属于前景。我们简单的可以这么理解,前景一般是会动的物体,而背景一般是不会动的物体。我们可以以此为依据,从而辨别简单的前景和背景。不会动的物体,我们可以认为在一个很长的时间段内,它的像素值几乎都是保持一个数的。那么我们可以取若干张图片将其对应点的像素大小相加,然后再求均值,我们即可以认为这个是我们所需要的背景。可以用以下公式来表示:            
                
         
            
            
            
            # 无需背景进行背景减除的 Python 实现
背景减除是计算机视觉中的一项重要技术,广泛应用于视频监控、交通流量分析以及运动分析中。然而,传统的背景减除需要依据先前的帧对背景模型进行训练,并依赖于背景信息。在某些情况下,尤其是动态背景或光照变化较大的环境下,基于背景的方法可能不够有效。因此,本文将介绍一种无需背景模型进行背景减除的方法,并提供相关的 Python 代码示例。
## 背景减除的            
                
                    
                        
                                                            
                                                                        
                                                                                        原创
                                                                                    
                            2024-09-12 04:06:03
                            
                                55阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            一、算法思想新背景模型,利用帧间差分法解决背景突变带来的问题,运用形态学滤波的方法对得到的二值化图像进行处理,最后使用积分投影法实现对目标的分割。二、背景模型初始化事先建立复杂精确的背景模型,而是将采集到的第一帧图像作为背景图像,虽然该图像不一定就是真实的背景,但是随着背景模型的不断更新,该模型会越来越接近于真实的背景。三、运动目标的检测算法将当前采集到的图像与系统维护的背景模型进行差分运算,当运            
                
         
            
            
            
            图片1、读入图像使用函数 cv2.imread() 读入图像。这幅图像应该在此程序的工作路径,或者给函数提供完整路径, 第二个参数是要告诉函数应该如何读取这幅图片。(不写默认彩色)         cv2.IMREAD_COLOR:读入一副彩色图像。图像的透明度会被忽略,这是默认参数。   &nbs            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-03-16 11:05:46
                            
                                95阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            由于之前老师一直让我用我们的到的图像深度信息进行虚化,如果深度信息得到的很准确,这的确不是一件难事,只是目前我对那一套计算体系掌握的不够。假设我们手上有一副已经获取的深度图像,现在我的手上有两份,DFD以及双目(双目的后面我会放上)DfD的那个项目不便于公开,抱歉。 我们得到的原图如下:  这次换了以下场景拍的,依然是液晶透镜拍摄得到的像  然后还有一幅深度图。第一步:我们利用深度图进行一个图像分            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-01-09 19:47:07
                            
                                119阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            Learning Opencv 3 —— 十五章 背景去除 Background Subtraction背景去除概述background subtraction 也被称为 background differencing。这里将首先介绍经典背景模型的缺点,之后将介绍一些更高阶的方法。其中将介绍一种处理室内光线相对稳定的快速方法和一种能够兼容室外场景的一种称为 codebook 速度较慢的方法。背景去            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-11-08 15:46:58
                            
                                282阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            文章目录一、项目思路二、环境布置2.1、cvzone安装2.2、MediaPipe安装2.3、常见问题2.4、注意事项三、算法详解3.1、segmentor.removeBG():去除背景(抠图)3.2、cvzone.stackImages():堆叠图像3.3、fpsReader.update():更新帧图像3.4、os.listdir():返回指定的文件夹包含的文件或文件夹的名字的列表。四、实            
                
         
            
            
            
            // 该文件是 OpenCV 项目的一部分。 它受此发行版顶层目录和 http://opencv.org/license.html 中的 LICENSE 文件中的许可条款的约束
#include "opencv2/core.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/video.hpp"
#include "opencv2/vide            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-05-23 17:15:59
                            
                                104阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            由于中篇最后得到的图像还是需要手动去磨皮,边缘突出的部分还是没找好。 这里我再想办法处理一下:  现在我们已经得到了这样的一张掩模:  边缘找的不是很好  那么我们可以结合找边缘的方法对它进行处理。第一步:  找边缘的方法常见的主要有三种: 1.1 Sobel代码如下:#include <opencv2/core/core.hpp>
#include <opencv2/highg            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-03-07 19:02:36
                            
                                181阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            从本次教程开始,我们进入新的篇章,之前一直在讨论OpenCV的特征部分,这次我们来讨论OpenCV中的背景分离,又称背景减法模型。背景分离(BS)是一种通过使用静态相机来生成前景掩码(即包含属于场景中的移动对象像素的二进制图像)的常用技术。顾名思义,BS计算前景掩码,在当前帧与背景模型之间执行减法运算,其中包含场景的静态部分,或者更一般而言,考虑到所观察场景的特征,可以将其视为背景的所有内容。背景            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-09-16 22:39:20
                            
                                232阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
                  背景提取是在视频图像序列中提取出背景,背景就是场景中静止不动的景物。因为摄像机不动,因此图像中的每个像素点都有一个对应的背景值,在一段时间内,这个背景值是比较固定的。背景提取的目标就是根据视频图像序列,找出图像中每一点的背景值。 背景提取有很多算法。针对静止摄像机的帧间差分法、高斯背景差分法,还有针对运动摄像机的光流法等。 一. 帧间差            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-09-27 13:27:58
                            
                                267阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            目录前言1 Temporal Median Filtering2 使用中值进行背景估计3 背景估计代码(C ++ / Python)3.1 Python代码3.2 C++代码4 帧差分(C++/Python)4.1 Python代码4.2 C++代码4.3 结果 前言首先,奉上原文链接:https://www.learnopencv.com/simple-background-estimatio            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-07-26 10:46:15
                            
                                31阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            openCV中实现了背景分割算法——grabCut()和漫水填充算法——floodFill();其中GrabCut算法是调用仅需要确认前景和背景输入,该算法就可以完成前景和背景的相对最优的分割;该算法利用了图像中的纹理信息和边界反差信息,来进行分割,和分水岭算法比较类似,但是速度挺慢的,结果好于分水岭;floodFill漫水填充算法比较常见,图画中的填充色用的就是这个算法;原理也比较简单就是遍历封            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-03-19 08:32:22
                            
                                48阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            一、理论资料 codebook背景建模方法,opencv库中还没有对应的函数。在《learning opencv》中相应的代码,但是不完善甚至,有错误。 有对codebook理论作简要的介绍,部分引用如下: CodeBook算法的基本思想是得到每个像素的时间序列模型。这种模型能很好地处理时间起伏,缺点是需要消耗大量的内存。CodeBook算法为当前图像的每一个像素建立一个CodeBook(CB)            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-05-03 19:20:07
                            
                                52阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            本期我们将使用Python和OpenCV为视频会议创建虚拟背景。       虚拟背景是当前远程工作的员工中的热门话题之一。由于Covid-19的流行,许多人必须通过视频通话以便继续工作。很多视频会议的软件可以设置虚拟背景,以便用户建立更友好的氛围来接听这些电话。作为一名程序员,当我们第一次使用这样的虚拟背景时自然很感兴趣。我们都想知道它是如何工作的,可以自己建立这样的虚拟背景吗?接下来,我们将尝            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-05-07 14:14:21
                            
                                43阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            在上一篇笔记《OpenCV4学习笔记(56)》中,整理了关于在OpenCV中使用GrabCut图像分割算法的相关内容,那么本次笔记就以GrabCut算法为基础来实现对图像的背景替换和背景虚化效果。实现对图像的背景替换和背景虚化效果的整体流程如下: (1)对图像进行USM锐化(可参阅《OpenCV4学习笔记(16)》) ,用于增强图像细节,以便于提取前景区域。 (2)手动选择ROI区域并执行Grab            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-11-20 21:48:09
                            
                                105阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            这次要整理的笔记是视频背景、前景提取及运动检测,是通过对视频前面的一系列帧图像来提取背景模型,从而分离出前景目标和背景,进而对运动的前景目标进行检测。OpenCV中实现的背景模型提取算法有两种,一种是基于自适应高斯混合背景建模(MOG2)的帧差法实现的背景提取,另外一种是基于最近邻KNN算法实现的。这两种算法相比之下,基于自适应高斯混合背景建模(MOG2)的帧差法所能达到的效果更好,所以使用频率也            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-11-02 12:52:43
                            
                                589阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            本文的环境为opencv3.0+vs13,使用库函数简单的实现了背景差方法下的车辆检测。PS:但检测的效果并不理想,所以改用haar+adaboost的方法去做检测了,但有幸看到国外一个Urban Track 的项目,介绍里提及使用背景差实现了检测和跟踪,本人还没看完下面贴出链接,感兴趣的可以去研究下:https://www.jpjodoin.com/urbantracker/基本的思路都体现在注            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-03-31 08:52:30
                            
                                91阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            简介   继续添加新功能,和改bug。。 图像保存异常具体代码   查看拍摄图片发现图片的颜色异常,终于发现opencv下图片为BGR的格式,而Android上为RGB。所以需要在保存之前先交换下R和B通道的数据。 void BGRToRGB(Mat mat1){
    int width, height, k, j;
    IplImage src1;
    CvScalar s1, s2            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-07-24 10:32:13
                            
                                63阅读
                            
                                                                             
                 
                
                                
                    