入手opencv,最好的方法就是对应着程序进行学习是一个很好的方法,通过一些单个程序来了解图形处理的一些知识。这篇文章将介绍下面三个小任务。通道变换,灰度化,普通二值化。本文以C++版本进行代码介绍。Q1:通道变换一幅常规彩色的图像由BGR三通道组成,opencv提供cv::imread函数读取的彩色图像通道就是按照BGR的顺序进行排列的。opencv中也提供了模板类Vec,它可以表示一个向量。比
opencv学习第三天,今天学习一下灰度变换,我对图像不是太了解,我还特地学了一下灰度变换与像素的区别:像素、灰度、RGB、分辨率_y_xxiii的博客_像素值和rgb的关系先来梳理一下不太懂的知识点:1.关于cvtColor函数,cvtcolor()函数是一个颜色空间转换函数,可以实现RGB颜色向HSV,HSI等颜色空间转换。也可以转换为灰度图。OpenCV学习cvtColor函数_1_blue
图像增强的目的:改善图像的视觉效果或使图像更适合于人或机器的分析处理。通过图像增强,可以减少图像噪声,提高目标与背景的对比度,也可以增强或抑制图像中的某些细节。---------------------------------------------------------------------------------------------------灰度变换:把原图像的像素灰度经过某个函数变
直方图概念   图像的构成是有像素点构成的,每个像素点的值代表着该点的颜色(灰度图或者彩色图)。所谓直方图就是对图像的中的这些像素点的值进行统计,得到一个统一的整体的灰度概念。一般情况下直方图都是灰度图像,直方图x轴是灰度值(一般0~255),y轴就是图像中每一个灰度级对应的像素点的个数。直方图的好处就在于可以清晰了解图像的整体灰度分布,这对于后面依据直方图处理图像来说至关重要
openCV知识点总结知识点补充RGB格式:图像像素由RGB三种颜色组合而成 灰度图:在RGB模型中,如果R=G=B时,则彩色表示一种灰度颜色,其中R=G=B的值叫灰度值,因此,灰度图像每个像素只需一个字节存放灰度值(又称强度值、亮度值),灰度范围为0-255。一般常用的是加权平均法来获取每个像素点的灰度值。 二值图:图像的二值图,就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像
1、线性变换灰度的线性变换将图像中的所有像素点的值按线性变换函数进行变换。在曝光不足或过度的情况下,图像灰度值会局限在一个很小的范围内,这时在显示器上看到的将是一个模糊不清、似乎没有层次的图像。针对这一情况,使用一个线性单值函数对图像内的每一个像素做线性扩展,将有效地改善图像的视觉效果。线性变换原理如图所示。 根据上图,以曝光不足为例,假设原图像f(x,y)的灰度范围是[a,b],期望经过灰度线
目录一、灰度原理1.1 图像的存储与像素1.1.1 像素与分辨率1.1.2 物理原理1.2 RGB图像1.3 灰度图像二、RGB转灰度公式一、灰度原理1.1 图像的存储与像素1.1.1 像素与分辨率像素是影像显示的基本单位,是一个具有明确位置和颜色值的方格。分辨率指的是一个显示系统对图像细节的分辨能力,通常以长边像素个数乘以宽边像素个数来表示。目前有多种分辨率,如VGA,HD,4K等。以VGA为例
转载 2024-03-25 17:14:50
204阅读
# Java OpenCV 图像拉伸实现 ## 概述 在本文中,我将向你介绍如何使用Java和OpenCV库来实现图像拉伸功能。图像拉伸是一种常见的图像处理技术,它通过调整图像的大小来改变其宽度和高度。 在开始之前,请确保你已经正确安装了Java和OpenCV,并且已经将OpenCV库导入到你的Java项目中。 ## 实现步骤 下面是实现图像拉伸功能的步骤概述: | 步骤 | 描述 | |
原创 2023-07-27 14:12:08
851阅读
引言OpenCV是计算机视觉中经典的专用库,其支持多语言、跨平台,功能强大。OpenCV-Python为OpenCV提供了Python接口,使得使用者在Python中能够调用C/C++,在保证易读性和运行效率的前提下,实现所需的功能。 1.图像的基本概念灰度灰度使用黑色来显示物体,即黑色为基准色,不同饱和度的黑色来显示图像。 通常,像素值量化后用一个字节(8B)来表示,如把有黑-灰-白连续变化的
对数变换的公式为:其中c为常数,r>=0 对数变换目前我知道的有两个作用:①因为对数曲线在像素值较低的区域斜率较大,像素值较高的区域斜率比较低,所以图像经过对数变换之后,在较暗的区域对比度将得到提升,因而能增强图像暗部的细节。②图像的傅里叶频谱其动态范围可能宽达0~10^6。直接显示频谱的话显示设备的动态范围往往不能满足要求,这个时候就需要使用对数变换,使得傅里叶频谱的动态范围被合
图像缩放是指将图像的尺寸变小或变大的过程,也就是减少或增加源图像数据的像素个数。图像缩放一定程度上会造成信息的丢失,因此需要考虑适宜的方法进行操作。下面介绍两种常用的图像缩放方法的原理及实现1.基于等间隔提取图像缩放等间隔提取图像缩放是通过对源图像进行均匀采样来完成的。对于源图像数据f(x,y),其分辨率为M*N,如果将其分辨率改变成m*n,对于等间隔采样而言,其宽度缩放因子k1=m/M,高度缩放
    这一篇我们来学习下直方图的应用,主要有直方图的拉伸、直方图均衡化以及利用直方图寻找相似图像。1. 直方图拉伸    图像对比度增强分为两类:直接对比度增强和间接对比度增强。直方图拉伸和直方图均衡化是两种最常用的间接对比度增强方法。直方图拉伸是通过对比度拉伸对直方图进行调整,从而扩大“前景”和背景灰度的差别,以达到增强对比度的目的。
C++版的opencv读取灰度图像可以有不同的方法,这里列出几种方法,并简述它们的区别。这里用到的两张图片为lena.jpg(彩色)和lena.bmp(灰度)直接读取灰度图像图像本身就是灰度图像,直接使用imread()读取图像:#include <opencv2/opencv.hpp> #include <iostream> using namespace cv; usi
点运算又称为对比度增强、对比度拉伸灰度变换,是一种通过图像中的每一个像素值(即像素点上的灰度值)进行运算的图像处理方式。它将输入图像映射为输出图像,输出图像每个像素点的灰度值仅由对应的输入像素点的灰度值决定,运算结果不会改变图像内像素点之间的空间关系,其运算的数学关系式: 其中表示原图像,表示经过点运算处理后的图像,表示点运算的关系函数。按照灰度变换的数学关系点运算可以分为线性灰度变换、分段线性
如果图像灰度值集中在某一区间,则不利于我们对图像的观察,这时候我们可以对图像灰度拉伸处理。可以把灰度拉伸到0~255,比如博文 就是将灰度值拉到了0~255。当然也可把图像灰度拉伸到指定的区间。具体思路如下:对灰度值设置上下两个阈值,分别记为iLow和iHigh,小于iLow的像素点的灰度值置为0,大于iHigh的灰度值置为255,位于[iLow iHigh]区间内的点用式子s
''' 图像的缩放 INTER_NEAREST 最近邻插值 INTER_LINEAR 双线性插值(默认设置) INTER_AREA 使用像素区域关系进行重采样。 它可能是图像抽取的首选方法,因为它会产生无云纹理的 结果。 但是当图像缩放时,它类似于INTER_NEAREST方法。 INTER_CUBIC 4x4像素邻域的双三次插值 INTER_LANCZOS4 8x8像素邻域的
 一、直方图均衡化          直方图均衡化是灰度变换的一个重要应用,广泛应用在图像增强处理中,它是以累计分布函数变换为基础的直方图修正法,可以产生一幅灰度级分布具有均匀概率密度的图像,扩展了像素的取值动态范围。许多图像灰度值是非均匀分布的,其中灰度值集中在一个小区间内的图像是很常见的,直方图均衡化是一种通过重新均匀地分布各灰度
【步骤】1、滤波:减少噪声,主要使用高斯滤波2、增强:增强算法可以将图像灰度点邻域强度值有显著变化的点凸显出来,在具体编程实现时,可通过计算梯度幅值来确定。3、检测:经过增强的图像,往往邻域中有很多点的梯度值比较大,而在特定的应用中,这些点并不是我们要找的边缘点,所以应该采用某种方法来对这些点进行取舍。通常用阈值【cannny算子】Canny 的目标是找到一个最优的边缘检测算法(低错误率、高定位性
前言:本章的图像处理都是在空间域上进行的。   空间域是包含图像像素的简单平面,空间域技术直接操作图像的像素。某些图像处理的任务需要在空间域中执行效率更高或者更有意义,而另一些任务则更适合其它办法。图像增强的三类基本函数:线性函数,对数函数,幂函数A.线性函数 图像反转,使用反转变换,s=L-1-r,可以将灰度级范围在[0,L-1]的一幅图像进行反转。B.对数函数 
转载 2024-06-05 19:32:08
62阅读
项目中图片文件非常大,是很多张图片(灰度图)的数据都放在一个此文件中,其实文件的头部还是bmp头部。用opencv里边的cvLoadImage的话只能读取第一张图片的数据,因为读取图片的数据的多少是由文件头部的宽(width)与高(height)决定的。于是就想能不能fopen该文件然后直接定位到文件的数据部分,然后把该部分的数据copy到opencv的imageData中,就能使用opencv
转载 2023-10-04 21:07:54
183阅读
  • 1
  • 2
  • 3
  • 4
  • 5