引言:阈值化操作在图像处理中是一种常用的算法,比如图像的二值化就是一种最常见的一种阈值化操作。opencv2和opencv3中提供了直接阈值化操作cv::threshold()和自适应阈值化操作cv::adaptiveThreshold()两种阈值化操作接口,这里将对这两个接口进行介绍和对比。1、直接阈值化——cv::threshold()阈值化操作的基本思想是,给定一个输入数组和一个阈值,数组中
目录梯度锐化法Roberts算子Prewitt算子Sobel算子Laplacian增强算子效果图matlab代码梯度锐化法图像锐化最常用的是梯度法。对于图像f(x,y),在(x,y)处梯度定义为梯度是一个向量,其大小和方向分别为梯度变换方向是f(x,y)在该点灰度变换率最大的方向。离散图像处理常用到梯度的大小,因此把梯度的大小简称为"梯度"。并且一阶偏导数采用一阶差分近似表示,即为简化梯度计算,常
图像锐化的主要目的有两个:一是增强图像边缘,使模糊的图像变得更加清晰,颜色变得鲜明突出,图像的质量有所改善,产生更适合人眼观察和识别的图像;二是希望经过锐化处理后,目标物体的边缘鲜明,以便于提取目标的边缘、对图像进行分割、目标区域识别、区域形状提取等,为进一步的图像理解与分析奠定基础。图像锐化一般有两种方法:一是微分法,二是高通滤波法。高通滤波法的工作原理和低通滤波相似,这里不再赘述。下面主要介绍
转载 2023-07-03 23:47:30
154阅读
Quote :It is indeed a well-known result in image processing that if you subtract its Laplacian from an image, the image edges are amplified giving a sharper image. [From OpenCV 2 Computer Vision
转载 2023-08-23 16:25:31
117阅读
图像锐化-梯度算子该博文参考《数字图像处理》-杨帆 在图像识别中,需要有边缘鲜明的图像,及图像锐化。。然而边缘模糊是图像处理中常见的图像问题,由此造成的轮廓不清晰,线条不鲜明,使图像特征提取、识别、理解难以进行。 根据图像信号的频率特性,大面积的背景区域和缓慢变化的部分代表图像的低频分量,而他的边缘、细节、跳跃部分等都代表了高频分量,利用这一特性,我们可基于高通滤波来增强细节信息从而达到锐化目的的
前言图像锐化 (image sharpening) 是补偿图像的轮廓,增强图像的边缘及灰度跳变的部分,使图像变得清晰,分为空间域处理和频域处理两类。图像锐化是为了突出图像上地物的边缘、轮廓,或某些线性目标要素的特征。这种滤波方法提高了地物边缘与周围像元之间的反差,因此也被称为边缘增强。实现效果原图USM锐化Laplace锐化 上面三图从左到右分别是原图、USM锐化、Laplace锐化后的
获取图像像素指针CV_Assert(myImage.depth() == CV_8U);Mat.ptr(int i=0)获取像素矩阵指针,索引i表示第i行,从0开始计数;获得当前指针const uchar* current = myImage.ptr(row);获取当前像素点P(row, col)的像素值p(row, col) = current[col];像素范围处理saturate_casts
转载 2023-07-28 15:18:32
215阅读
1. 获取图像像素指针CV_Assert(myImage.depth() == CV_8U);Mat.ptr(int i=0) 获取像素矩阵的指针,索引i表示第几行,从0开始计行数。获得当前行指针const uchar* current= myImage.ptr(row );获取当前像素点P(row, col)的像素值 p(row, col) =current[col]2. 像素范围处理satur
对图像的滤波处理通常在图像上加一个滤波器,滤波器最常见的类型是线性滤波器,输出像素值由原始像素值加权值确定: g(i,j) =Σw,h f(i+w,j+h)*h(k,l), 其中h为卷积核,f为原始图像,g为目标图像。 3.2.1 boxfilter(方框滤波)方框滤波是滤波器中最简单的一种,每一个输出像素值是卷积内像素值的平均值。&nb
本节为opencv数字图像处理(8):频率域滤波的第五小节,使用频率域滤波器进行图像的平滑与锐化,主要包括:理想低通/高通滤波器,巴特沃斯低通/高通滤波器、高斯低通/高通滤波器、频率域拉普拉斯算子、高频强调滤波器以及同态滤波的介绍和C++实现。1. 使用低通滤波器进行图像平滑  考虑图像中的边缘与其他尖锐的灰度转变对其傅里叶变换的高频内容有贡献,因此在频率域平滑图像可通过高频分量的衰减来达到,即低
图象锐化建议先查看图像平滑 锐化处理的主要目的是突出图像中的细节或者增强被模糊了的细节,这种模糊不是由于错误操作,就是特殊图像获取方法的固有影响。图像均值滤波器可以使图像变模糊,是因为均值处理与积分相类似,因此可以对其进行逆运算(如微分运算)就可以使图像变得清晰。 常常采用基于一阶或二阶微分的锐化滤波器实现图像的锐化处理。一阶微分一阶微分是通过梯度法来实现的。对于图像f(i,j),它在点
图像锐化图像锐化(image sharpening)是补偿图像的轮廓,增强图像的边缘及灰度跳变的部分,使图像变得清晰,分为空间域处理和频域处理两类。图像锐化是为了突出图像上地物的边缘、轮廓,或某些线性目标要素的特征。这种滤波方法提高了地物边缘与周围像元之间的反差,因此也被称为边缘增强。图像锐化处理的目的是为了使图像的边缘、轮廓线以及图像的细节变得清晰,经过平滑的图像变得模糊的根本原因是因为图像受到
图像锐化与边缘检测1.Roberts算子Roberts算子又称为交叉微分算法,它是基于交叉差分的梯度算法,通过局部差分计算检测边缘线条。常用来处理具有陡峭的低噪声图像,当图像边缘接近于正45度或负45度时,该算法处理效果更理想。其缺点是对边缘的定位不太准确,提取的边缘线条较粗。2.Prewitt算子Prewitt是一种图像边缘检测的微分算子,其原理是利用特定区域内像素灰度值产生的差分实现边缘检测。
前言开局一张图,内容全靠编。简介图像锐化(image sharpening)是补偿图像的轮廓,增强图像的边缘及灰度跳变的部分,使图像变得清晰。函数声明void sharpen(const cv::Mat &image, cv::Mat &result);函数定义void sharpen(const cv::Mat &image, cv::Mat &result) {
转载 2023-07-26 22:04:05
316阅读
锐化概念图像平滑过程是去除噪声的过程。图像的主要能量在低频部分,而噪声主要集中在高频部分。图像的边缘信息主要也在高频部分,在平滑处理后,将会丢不部分边缘信息。因此需要使用锐化技术来增强边缘。平滑处理的本质是图像经过平均或积分运算,锐化进行逆运算(如微分)即可。微分运算是求信号变化频率,可以增强高频分量的作用。在对图像进行锐化处理前要确定图像有较高的信噪比,否则处理后的图像增加的噪声比信号多。常用的
1、图像锐化理论基础1、锐化的概念    图像锐化的目的是使模糊的图像变得清晰起来,主要用于增强图像的灰度跳变部分,这一点与图像平滑对灰度跳变的抑制正好相反。而且从算子可以看出来,平滑是基于对图像领域的加权求和或者说积分运算的,而锐化则是通过其逆运算导数(梯度)或者说有限差分来实现的。2、图像的一阶微分和二阶微分的性质图像的锐化也就是增强图像的突变部分,那么我们也就对图像的恒定区域中,突
# 使用OpenCV实现图像锐化 ## 1. 简介 OpenCV是一个开源的计算机视觉库,提供了许多图像处理和计算机视觉算法。图像锐化是一种常见的图像处理技术,通过增强图像的边缘和细节来使图像更加清晰和鲜明。 在本篇文章中,我们将学习如何使用OpenCV库在Python中实现图像锐化。首先,我们将介绍整个流程的步骤,并用表格展示出来。然后,我们将逐步讲解每个步骤需要做什么,并提供相应的代码和注
原创 10月前
87阅读
# Python OpenCV 锐化 ## 简介 OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉库,它提供了丰富的图像处理和计算机视觉算法。其中包含了许多用于图像增强的方法,如锐化(Sharpening)。锐化是一种图像增强技术,它可以增加图像的边缘和细节,使图像更加清晰和鲜明。在本文中,我们将使用Python和OpenCV来实现图
原创 10月前
195阅读
高频:图像中变化剧烈的部分。低频:图像灰度值变化缓慢、平坦的部分。根据高低频,可以设置高通和低通滤波器。高通滤波器可以检测变化尖锐、明显的地方,用于边缘检测;低通可以让图像变得平滑,消除噪声,用于图像平滑去噪。一、方框滤波可以用于模糊一张图片。涉及函数:cv2.boxFilter()参数说明:参数1:输入图像参数2:目标图像深度参数3:核大小参数4:normalize属性,true与均值滤波相同,
这篇知识分享目的是和大家一起分享一波传统图像处理中常用到的一些平滑方法,一起来熟悉下这些滤波的特点和不同,加深一波印象~目录图像平滑2D 卷积模糊和滤波均值滤波方框滤波高斯滤波中值滤波双边滤波 图像平滑模糊/平滑图片来消除图片噪声OpenCV函数:cv2.blur(), cv2.GaussianBlur(), cv2.medianBlur(), cv2.bilateralFilter()2D
  • 1
  • 2
  • 3
  • 4
  • 5