Windows Mobile 6 SDK 中的 GPS 工具GPS Intermediate Driver自从 Windows Mobile 5.0 引进了 GPS Intermediate Driver(GPS 中间驱动程序,以下简称 GPSID),开发基于 GPS(Global Positioning System,全球定位系统)的 Windows Mobile 应用程序变得简单多
转载
2024-10-08 21:35:19
42阅读
距离上次写博客已经好久好久好久了,真是懈怠的生活节奏,整天混吃等死玩游戏,前些日子做毕业设计时总算又学了点新东西。学了一点深度学习和卷积神经网络的知识,附带着详细学习了一下前段时间我觉得比较有意思的图像风格转换。毕竟是初学,顺便把神经网络方面的知识也写在前面了,便于理解。若有不对的地方的话,希望指正。 主要参考的文献有《A Neura
当曲线是按照多段来进行测量,有时每段需要创建一些重叠点,曲线重叠点过滤用来去除重叠部分,有2种方法
原创
2022-06-07 06:25:39
38阅读
# Java怎样将点过滤掉
## 引言
在Java开发中,我们经常会遇到需要过滤掉不符合条件的数据的情况,其中涉及到对点进行过滤。本文将介绍如何使用Java语言来实现对点的过滤。
## 过滤点的流程
下面是过滤点的整个流程,可以通过以下表格来展示:
| 步骤 | 描述 |
| --- | --- |
| 1 | 获取点集合 |
| 2 | 遍历每个点 |
| 3 | 判断点是否符合条件 |
原创
2023-12-07 15:27:59
48阅读
一,首先我们对函数先进行分析 findHomography: 计算多个二维点对之间的最优单映射变换矩阵 H(3行x3列) (就是对图片的矫正),使用最小均方误差或者RANSAC方法 函数功能:找到两个平面之间的转换矩阵。 这里涉及到映射变换的知识, 下面介绍下什么是映射变换: 1,如下图所示: 如果 ...
转载
2021-07-22 13:31:00
1626阅读
2评论
OpenCV与图像处理学习十二——图像形状特征之HOG特征一、图像特征理解1.1 颜色特征1.2 纹理特征1.3 形状特征1.4 空间关系特征二、形状特征描述2.1 HOG特征2.1.1 基本概念2.1.2 HOG实现过程2.1.3 代码实现 前面介绍了图像的基础知识、基本处理方法以及传统图像分割的应用,下面的笔记将介绍图像特征与目标检测部分的应用,知识脉络如下所示:一、图像特征理解图像特征是图
转载
2024-04-23 21:30:39
76阅读
将最近所学opencv的图像处理做个小整理,下期打算整理视频处理的一些记录。1.使用OpenCV对图像进行Harris,SIFT特征点提取,并标注特征点更多可以了解 Harris角点检测和SIFT特征· 特征点是啥?图像处理中,特征点指的是图像灰度值发生剧烈变化的点或者在图像边缘上曲率较大的点(即两个边缘的交点)。图像特征点能够反映图像本质特征,能够标识图像中目标物体。通过特征点的匹配能够完成图像
转载
2024-07-30 12:48:32
177阅读
特征,判决,得到判决 1.什么是haar特征?特征 = 某个区域的像素点经过某种四则运算之后得到的结果。这个结果可以是一个具体的值也可以是一个向量,矩阵,多维。实际上就是矩阵运算 2.如何利用特征 区分目标? 阈值判决,如果大于某个阈值,认为是目标。小于某个阈值认为是非目标。 3.如何得到这个判决? 使用机器学习,我们可以得到这个判决门限 
转载
2024-04-01 05:58:57
50阅读
过滤式方法先按照某种规则对数据集进行特征选择,然后再训练学习器,特征选择过程与后续学习器无关,这相当于先用特征选择过程对初始特征进行“过滤”,再用过滤后的特征来训练模型。【某种规则】:按照发散性或相关性对各个特征进行评分,设定阈值或者待选择阈值的个数,从而选择满足条件的特征。特征的发散性:如果一个特征不发散,例如方差接近于 0,也就是说样本在该特征上基本没有差异,那么这个特征对于样本的区分并没有什
转载
2023-12-29 18:57:23
511阅读
在中国内地主流的在线地图服务和接口,应国家相关部门的要求,在发布地图是都进行了国家国测局给的不可逆的加密算法(不公开的算法)进行无规律的GCJ-02(俗称:火星坐标系)坐标偏移,大概与实际的WGS84坐标偏移几十米到几百米之间。现在的在线地图主要的坐标系有WGS84、GCJ-02、BD-09三种,WGS84原始坐标,未经过偏移,大部分GPS设备和矢量数据都采用这种坐标系。在线地图中Google地图
Hog特征什么是Hog特征?Hog特征属于特征的一种,因此也是一种计算结果。我们在【OpenCV14:Haar特征】中可以知道,Haar特征是由模板计算出来的结果,Hog特征与其不同的是,其在经过模板计算时更复杂,还需要进一步的运算。首先陈述一下如何计算Hog特征:1、模块划分 图1 如上图所示,白色底板作为一张
转载
2024-04-29 15:25:20
65阅读
目标• 联合使用特征提取和 calib3d 模块中的 findHomography 在复杂图像中查找已知对象。基础还记得上一节我们做了什么吗?我们使用一个查询图像,在其中找到一些特征点(关键点),我们又在另一幅图像中也找到了一些特征点,最后对这两幅图像之间的特征点进行匹配。简单来说就是:我们在一张杂乱的图像中找到了一个对象(的某些部分)的位置。这些信息足以帮助我们在目标图像中准确的 找到(查询图像
转载
2024-06-22 18:47:36
104阅读
一般用法为: 基于Haar特征Adaboost人脸检测级联分类,称haar分类器。目前只介绍下Haar特征和积分图,其他的还未深入。1.Haar特征 什么是特征,特征就是分类器的输入。 把它放在以下的情景中来描写叙述,如果在人脸检測时我们须要有这么一个子窗体在待检測的图片窗体中不断的移位滑动,子窗体每到一个位置,就会计算出该区域的特征,然后用我们训练好的级联分类器对该特征进行筛选,一旦该特征通
转载
2024-04-06 09:26:22
24阅读
openCV生成mask掩膜,再根据mask生成ROI图片需求背景获取ROI图片:现在有一张图片,用户能够在坐标上选择一些点组成一个区域,这个区域称为用户感兴趣的区域,需要利用mask掩膜生成,需要生成mask图片、ROI图片,要求使用OpenCV+Java实现。概念解释ROIROI: region of interest 感兴趣的区域openCVOpenCV(Open Source Comput
转载
2024-05-30 07:36:07
28阅读
文章目录1.首先了解腐蚀和膨胀原理2.开运算(1)为什么开运算可以去白噪点呢?(2).函数讲解(3)代码实战3.闭运算(1)函数讲解(2)代码实战 1.首先了解腐蚀和膨胀原理2.开运算开运算=腐蚀+膨胀(顺序不可颠倒)(1)为什么开运算可以去白噪点呢?根据腐蚀的原理,使用一个给定大小的卷积核(结构单元)对图像进行卷积,操作是用卷积核(结构元素)B与其覆盖的二值图像A做“与”操作,如果结果为1,那
转载
2024-04-19 11:08:14
58阅读
图像的8x8像素部分被考虑,并将这个 8x8 框进一步划分为 4 个块,每个块为 4x4 维度。在每个 4x4 块内,图像梯度以向量的形式表示。通过搜索最独特或不同的特征在图像中找到关键点。这里,Key point Descriptor是由4个相邻向量组合而成。关键点描述符显示该部分图像中梯度变化的方向和幅度。对关键点周围的区域进行归一化,计算关键点区域的局部描述符。局部描述符是一个数字向量,用
转载
2023-12-21 15:45:58
167阅读
opencv图像特征点的提取和匹配(一)opencv中进行特征点的提取和匹配的思路一般是:提取特征点、生成特征点的描述子,然后进行匹配。opencv提供了一个三个类分别完成图像特征点的提取、描述子生成和特征点的匹配,三个类分别是:FeatureDetector,DescriptorExtractor,DescriptorMatcher。从这三个基类派生出了不同的类来实现不同的特征提取算法、描述及匹
转载
2023-12-21 15:45:53
197阅读
特征提取之LBP特征 局部二值模式(Local Binary Pattern,LBP)是一种描述图像纹理特征的算子,它具有旋转和灰度不变性。一般不将LBP图谱作为特征向量用于分类识别,而是采用LBP特征值谱的统计直方图作为特征向量用于分类识别。 1.LBP特征算子1.1原始LBP 原始LBP是在3*3的窗口内,以窗口中心元素为阈值,比较周围8个像素,若大于中心像素点,则标记为1,否则为0。然后这8
转载
2024-03-19 19:10:34
123阅读
一、图像处理简介1、图像是什么图像是人类视觉的基础,是自然景物的客观反映,是人类认识世界和人类本身的重要源泉。“图”是物体反射或透射光的分布,“像“是人的视觉系统所接受的图在人脑中所形成的印象或认识,照片、绘画、剪贴画、地图、书法作品、手写汉字、传真、卫星云图、影视画面、X光片、脑电图、心电图等都是图像。2、模拟图像和数字图像模拟图像:连续存储的数据模拟图像:在图像处理中,像纸质照片、电视模拟图像
转载
2024-05-10 19:45:54
63阅读
对OpenCV中的级联分类器相关结构的参数,进行了一定程度的解释
首先说一下这个级联分类器,OpenCV中级联分类器是根据VJ 04年的那篇论文(Robust Real-Time Face Detection)编写的,查看那篇论文,知道构建分类器的步骤如下:1、根据haar-like特征训练多个弱分类器2、使用adaboost算法将多个弱分类器组合成一个
转载
2023-07-23 22:34:50
95阅读