opencv中提供findContours()函数来寻找图像中物体的轮廓,并结合drawContours()函数将找到的轮廓绘制出。首先看一下findContours(),opencv中提供了两种定义形式官网:https://docs.opencv.org/3.3.1/d3/dc0/group__imgproc__shape.html#ga17ed9f5d79ae97bd4c7cf18403e16
转载 2023-08-13 10:07:08
362阅读
最近用OPENCV轮廓提取函数,总结一下。1 void findContours//提取轮廓,用于提取图像的轮廓 2 ( 3 InputOutputArray image,//输入图像,必须是8位单通道图像,并且应该转化成二值的 4 OutputArrayOfArrays contours,//检测到的轮廓,每个轮廓被表示成一个point向量 5 OutputArray hierarchy,//
转载 2023-06-28 23:30:35
622阅读
findContours函数,这个函数的原型为:void findContours(InputOutputArray image, OutputArrayOfArrays contours, OutputArray hierar- chy, int mode, int method, Point offset=Point()) 参数说明 输入图像image必须为一个2值单通道图像 contours
总结一下轮廓提取函数:C++: void findContours // 提取轮廓,用于提取图像的轮廓 ( InputOutputArray image, // 输入图像,必须是8位单通道图像,并且应该转化成二值图像 OutputArrayOfArrays contours, // 检测到的轮廓,每个轮廓被表示成一个Point向量 OutputArray hiera
1、轮廓发现(或提取)findContours( InputOutputArray binImg, OutputArrayOfArrays contours, OutputArray hierachy, int mode, int method, Point offset=Point() ) 参数解释: 第一个参数 binImg:输入8bit图像,0值像素值不变,非0的像素看成1;
转载 2023-11-27 10:49:05
207阅读
目标了解轮廓是什么。学习查找轮廓,绘制轮廓等。 cv2.findContours(),cv2.drawContours() 什么是轮廓?轮廓可以简单地解释为连接具有相同颜色或强度的所有连续点(沿边界)的曲线。轮廓是用于形状分析以及对象检测和识别的有用工具。为了获得更高的准确性,请使用灰度图像。因此,在找到轮廓之前,请应用阈值或canny边缘检测从OpenCV 3.2开始,cv2.findConto
转载 2024-02-19 18:51:03
197阅读
一、概述  使用发现并绘制轮廓比较简单,只需要调用findContours和drawContours两个方法就行了,但前提是要对图像做一下预处理。  实现步骤如下:  1.将原图转换为灰度图像  2.执行二值分割  3.去除无用的噪声  4.发现轮廓  5.绘制轮廓  6.展示轮廓图二、示例代码  Mat src = imread(inputImagePath); imshow("原始图"
转载 2023-06-30 23:56:28
421阅读
OpenCV 轮廓基本特征  分类: OpenCV(35)  一、概述       我们通过cvFindContours( )函数获取得图像轮廓有何作用呢?一般来说,我们对轮廓常用的操作有识别和处理,另外相关的还有多种对轮廓的处理,如简化或拟合轮廓,匹配轮廓到模板,等等。
文章目录一、寻找轮廓findContours()1.要层次hierarchy2.不要层次hierarchy3.轮廓就是点集二、绘制轮廓drawContours()三、寻找凸包四、使用多边形1.外部矩形边界boundingRect()2.寻找最小包围矩形minAreaRect()3.寻找最小包围圆形minEnclosingCircle()4.用椭圆拟合二维点集fitEllipse()5.逼近多边形
转载 2024-04-27 10:28:29
974阅读
一、OpenCV中的轮廓 图像的上半部分是一张白色背景上的测试图像,包含了一系列标记 A 到 E的区域。寻找到的轮廓被标记为 cX 或 hX, 其中c 代表 “轮廓(contour)”,h 代表 “孔(hole)”(也可以理解为内轮廓)。 同样,左图是原始图片,右图是寻找到的轮廓,它也采用了类似的标注方法。 二、函数调用细节 寻找轮廓的主要函数是 cv::
转载 2024-08-29 16:09:38
311阅读
轮廓特征目标查找轮廓的不同特征,例如面积,周长,重心,边界框等。你会学到很多轮廓相关函数矩   图像的矩可以帮助我们计算图像的质心,面积等。详细信息请查看维基百科Image Moments。   函数 cv2.moments() 会将计算得到的矩以一个字典的形式返回。如下:# -*- coding: utf-8 -*- """ Created on Sun Jan 12 18:30:17 2014
目录一、轮廓的绘制的作用二、内容介绍三、代码实现一、轮廓的绘制的作用用于图形分析和处理:轮廓是图像中物体边界的描绘,通过绘制轮廓,我们可以更好地分析和理解图像中的物体和形状。例如,轮廓可用于识别和区分不同的对象、测量物体的面积和周长等。辅助机器视觉和物体识别:轮廓可以帮助计算机视觉系统(如机器人、自动驾驶车辆等)更好地识别和理解其环境。例如,通过轮廓,系统可以识别出不同的人、物体或道路标志。特征提
 一、什么是层次结构通常我们使用函数cv.findContours()在图片中查找一个对象。有时对象可能位于不同的位置。还有一些情况,一个形状在另外一个形状的内部。这种情况下我们称外部的形状为父,内部的形状为子。按照这种方式分类,一副图像中的所有轮廓之间就建立父子关系。  让我们来看一个简单的例子: 在这个图中,我给这几个形状编号为0-5,2和2a分别代表最
转载 2023-11-02 10:42:23
106阅读
/* Hu轮廓匹配: #include "Opencv_MatchShape.h" #include "Match_Shape_NCC.h" int main(int argc, char* argv) { Opencv_MatchShape demo; demo.MatchShape_HU(); system("pause"); return 0; } */ #include <io
转载 2023-12-14 19:13:44
55阅读
本文实现的功能,查找轮廓,经常和findContours()一起使用的一个函数是approxPolyDP()。approxPolyDP()用另一条顶点较少的曲线来逼近一条曲线或者一个多边形,这样两条曲线之间的距离小于或等于指定的精度。同时也有使闭合逼近曲线的选项(那就是说,起始点和终止点相同)。pointPolygonTest()函数判定一个点是否在一个多边形内。鼠标回调函数的使用。 #inclu
一个是findContours( img, contours0, hierarchy, RETR_TREE, CHAIN_APPROX_SIMPLE);另一个是drawContours( cnt_img, contours, idx, color, 1, 8, hierarchy ); int main( int argc, char**) { Mat img = Mat::ze
转载 2024-08-29 17:37:44
36阅读
虽然Canny之类的边缘检测算法可以根据像素间的差异检测出轮廓边界的像素,但是它并没有将轮廓作为一个整体进行处理。 函数findContours():可以将这些边缘像素合成轮廓。一个轮廓对应一系列点,这些点以某种方式表示图像中的一条曲线。 1)在opencv中,轮廓用标准模板库(STL)向量vector<>表示; 2)它处理的图像可以是Canny()函数得到的有边缘像素的图像,或者是t
1.寻找轮廓apivoid cv::findContours( InputOutputArray image, OutputArrayOfArrays contours, OutputArray hierarchy, int mode, int method, Point offset = Point()各个参数详解如下:Image表示输入图像,必须是二值图像,二值图像可以threshold输出、
OpenCV中的轮廓1.初识轮廓1.1 原理1.2 常用函数2.轮廓的特征2.1 矩2.2 轮廓近似2.3 凸包2.4 边界2.5 拟合2.6 极点3. 形状匹配4. 轮廓的层次结构4.1 轮廓的层级结构4.2 轮廓的检索形式 1.初识轮廓1.1 原理轮廓可以简单认为成将连续的点(连着边界)连在一起的曲线,具有相同的颜色或者灰度。使用二值化图像可以更准确识别轮廓。寻找轮廓之前要进行阈值化处理或C
一、话说轮廓关于轮廓,我们一定能想起前面的边缘检测,但直接进行边缘检测后会出现一个尴尬的情况:只计算出了边缘,但对机器来说不知道哪些是物体的轮廓,而很多时候我们确实肥肠希望能找出物体的轮廓轮廓检测能较好的化解这一尴尬的情况。对于轮廓,官方指导中给出了这样的解释:“轮廓可以理解为图像中具有相同颜色或密度的位于边界的连续点的集合,轮廓是形状分析和对象识别的有利工具。”在OpenCV中,我们常用fin
  • 1
  • 2
  • 3
  • 4
  • 5