前言 CamShift算法,全称是 Continuously AdaptiveMeanShift,顾名思义,它是对Mean Shift 算法的改进,能够自动调节搜索窗口大小来适应目标的大小,可以跟踪视频中尺寸变化的目标。它也是一种半自动跟踪算法,需要手动标定跟踪目标。CamShift基本思想是以视频图像中运动物体的颜色信息作为特征,对输入图像的每一帧分别作 Mean-Shift 运算,并
转载
2024-07-18 23:34:51
36阅读
cv.meanShift(probImage, window, criteria)参数:probImage: ROI区域,即目标的直方图的反向投影window
原创
2022-06-01 17:38:35
373阅读
meanshift 被应用于 object track 中,其主要思想如下: 如下图所示,对该点集应用 meanshift 算法可以定位到点集最稠密位置,而点集最稠密位置即为我们需要跟踪的物体位置。 1)为什么点集最稠密位置即为我们需要跟踪的物体位置呢?这一般情况下是使用 histogram backprojection 实现,
原创
2022-01-11 16:33:59
345阅读
Meanshift(均值漂移)是一种在一组数据的密度分布中寻找局部极值的稳定的方法。Meanshift不仅能够用于图像滤波,视频跟踪,还能够用于图像切割。 通过给出一组多维数据点,其维数是(x,y,r,g,b),均值漂移能够用一个窗体扫描空间来找到数据密度最大的区域,能够理解为数据分布最集中的...
转载
2014-08-19 20:45:00
348阅读
2评论
1 简介图像的分割技术指的是将图像分成具有各种特殊性质的区域并且将感兴趣的目标提取出来的技术和过程.Mean Shift算法是一种十分有效的聚类迭代的算法,能够在多种特征空间分析的相关领域得到应用,其中就包括图像的分割.实验的研究对象是处理视觉图像的分割,用扩展形式的Mean Shift算法来解决视觉图像的分割问题,获得了较好的成效.Mean Shift图像分割的算法由图像的滤波步骤及图像的合并步
原创
2022-04-15 10:56:03
1151阅读
转载
2013-04-13 23:33:00
371阅读
点赞
2评论
Meanshift
原创
2023-01-12 07:05:15
313阅读
YOLACT,全称为:You Only Look At CoefficienTs,从标题可以看出这个模型的名称有些致敬YOLO的意思。YOLACT是2019年ICCV会议论文,它是在现有的一阶段(one-stage)目标检测模型里添加掩模分支。而经典的mask-rcnn是两阶段实例分割模型是在faster-rcnn(两阶段目标检测模型)添加掩模分支,但是在YOLACT里没有feature roi
转载
2024-03-25 13:46:52
42阅读
把图像分成若干个特定的、具有独特性质的区域,每一个区域代表一个像素的集合,每一个集合代表一个物体,而完成该过程的技术通常称为图像分割。图像分割方法主要分为:基于阈值的分割方法、基于区域的分割方法、基于边缘的分割方法,以及基于特定理论的分割方法等。 阈值分割实现简单、计算量小、性能稳定。 阈值分割处理又称为图像的二值化处理。 文章目录1 全局阈值分割APIOTSU优化TRIANGLE优化直方图技术法
转载
2024-05-10 13:59:35
52阅读
最简单的图像分割的方法。应用举例:从一副图像中利用阈值分割出我们需要的物体部分(当然这里的物体可以是一部分或者整体)。这样的图像分割方法是基于图像中物体与背景之间的灰度差异,而且此分割属于像素级的分割。为了从一副图像中提取出我们需要的部分,应该用图像中的每一个像素点的灰度值与选取的阈值进行比较,并作出相应的判断。(注意:阈值的选取依赖于具体的问题。即:物体在不同的图像中有可能会有不同的灰度值。一旦
转载
2024-07-10 18:27:36
56阅读
最近需要做一个图像分割的程序,查了opencv的源代码,发现opencv里实现的图像分割一共有两个方法,watershed和mean-shift算法。这两个算法的具体实现都在segmentation.cpp文件内。watershed(分水岭算法)方法是一种基于边界点的分割算法。我想好好的研究一下, 网上找了一些博客和教程,感觉也就泛泛的解释了一下实验的流程,具体算法的运行过程并不清楚,又把原始论文
转载
2024-03-31 11:04:06
57阅读
均值漂移,可以对非刚性物理进行跟踪,是分参数估计,过程是迭代的过程,对光和形态不敏感,缺点是检测目标是固定的,特征不较少,模板背景没有实时更新
原创
2022-01-12 17:06:58
670阅读
学习目标在本章中,我们将学习用于跟踪视频中对象的Meanshift和Camshift算法。MeanshiftMeanshift背后的直觉很简单,假设你有点的集合。(它可以是像素分布,例如直方图反投影)。你会得到一个小窗口(可能是一个圆形),并且必须将该窗口移到最大像素密度(或最大点数)的区域。如下图所示:初始窗口以蓝色圆圈显示,名称为“C1”。其原始中心以蓝色矩形标记,名称为“C1_o”。但是,如
原创
2021-01-05 15:56:12
309阅读
学习目标在本章中,我们将学习用于跟踪视频中对...
转载
2020-03-02 11:15:00
51阅读
2评论
图像分割之(四)OpenCV的GrabCut函数使用和源码解读zouxy09@.com GrabCut做了一个了解。OpenCV中的GrabCut算法是依据《"GrabCut" - Interactive Foreground Extraction using Iterated Graph Cuts》这篇文章来实现的。现在我对源码做了些注释,以便我们更深入的了解该算法。一直觉得论文和
转载
2024-05-24 18:03:23
108阅读
分割的结果中通常包含不想要的干扰,如我们感兴趣的物体被干扰了,如由于反射对分割结果造成的干扰,这时,形态学操作提供了特别有用的方法,让我们调整和描述物体的形状。 本文聚焦形态学操作的若干典型应用,不会对形态学操作的基本数学理论进行系统的阐述,也不会对Op
转载
2024-03-04 21:32:30
89阅读
文章目录前言一、二值化二、形态学去噪点三、创建maker四、应用分水岭五、完整代码 前言我们将展示一个如何使用距离变换和分水岭分割相互接触的物体的例子。 考虑一下下面的硬币图像,这些硬币相互接触。即使你去阈值化它,它也会互相碰触。一、二值化我们从找到硬币的大概估计值开始。为此,我们可以利用自适应的二值化。#include<iostream>
#include<opencv2\o
转载
2024-01-16 16:05:35
49阅读
目录0x01 FloodFill分割0x02 均值漂移MeanShift0x03 图割Grabcut0x04 奇异区域检测0x05 肤色检测0x01 FloodFill分割FloodFill泛洪填充算法是在很多图形绘制软件中常用的填充算法,通常来说是自动选中与种子像素相关的区域,利用指定的颜色进行区域颜色替换,可用于标记或分离图形的某些部分。比如windows系统中的图像编辑软件中的油漆桶这一功能
转载
2024-03-19 16:59:26
364阅读
Mean Shift均值漂移算法是无参密度估计理论的一种,无参密度估计不需要事先知道对象的任何先验知识,完全依靠训练数据进行估计,并且可以用于任意形状的密度估计,在某一连续点处的密度函数值可由该点邻域中的若干样本点估计得出。Mean shift将特征空间视为先验概率密度函数,那么输入就被视为是一组满足某种概率分布的样本点,这样一来,特征空间中数据最密集的地方,对应于概率密度最大的地方,且概率密度的
转载
2016-09-28 23:03:00
191阅读
OPENCV 中的代码改进。当然要依据自己的实际情况来,OPENCV 中行人检測有两种矩形框的融合算法。这里仅仅对meanshift 方法做改进 假设有更好的方法。希望能够跟我讲下。 对于去除重合部分。我也写了改进,看懂了能够加到自己程序中。 为什么要做局部MeanShift? 图1.全局MeanS
转载
2017-04-19 18:23:00
372阅读
2评论