最近想要实现GPU加速,在网上找了很多资料,看了各种博文,终于自己成功编译了opencv2413带gpu模块的库。现特此做一个记录:独立显卡为:GTX 750Ti      软件及需要用到的库:cmake3.3.0+vs2013+opencv2413源码+cuda toolkits6.5.14+tbb43_20150611oss  主要步骤为:1、在PCI插
转载 8月前
194阅读
        众所周知,Gpu加速技术对图像处理具有很大的影响,在前面的博客中通过对比验证了Gpu加速技术对图像滤波的高效率。但是Gpu技术并不是万能的,本文通过比较发现Gpu计算直方图的效率并没有传统计算方法效率高。下面表格是对比结果,时间是通过运行20次求平均值而得,后面给出相应的比较代码。由结果可以看出Cpu计算直方图是运行效率更高,当对图片数据库进
OpenCV4 + CUDA 从配置到代码.....引子一直有人在研习社问我,怎么去做OpenCV + CUDA的加速支持。其实网上用搜索引擎就可以找到一堆文章,但是其实你会发现,按照他们的做法基本都不会成功,原因是因为文章中使用的OpenCV版本太老旧、英伟达GPU的CUDA库也太久远。其实这个都不是主要原因,真实原因是OpenCV4跟之前的版本,编译CUDA的方法不一样了。所以感觉有
网上教程挺多的的,我也是参考网上教程编译成功的,现在把我编译的过程发出来。 目的:使用opencv中的cuda加速函数。例如:frame1_gray = cv.cuda_GpuMat(image1) frame2_gray = cv.cuda_GpuMat(image2) opticalFlowGPU = cv.cuda_FarnebackOpticalFlow.create(3,0.5,Fals
如果您使用OpenCV已有一段时间,那么您应该已经注意到,在大多数情况下,OpenCV都使用CPU,这并不总能保证您所需的性能。为了解决这个问题,OpenCV在2010年增加了一个新模块,该模块使用CUDA提供GPU加速。您可以在下面找到一个展示GPU模块优势的基准测试:简单列举下本文要交代的几个事情:概述已经支持CUDA的OpenCV模块。看一下cv :: gpu :: GpuMat(cv2.c
OpenCV中配置CUDA,实现GPU加速按语:首先感谢博主的方法,在这个基础上编译之后发现了很多问题,所以进行了改正,有了以下方法:1、 查看本机配置,查看显卡类型是否支持NVIDIA GPU,本机显卡为NVIDIA GeForce  GT630;2、 从http://www.nvidia.cn/Download/index.aspx?lang=cn下载最新驱动并安
转载 9月前
144阅读
在线gpu加速服务器ATUODL,与pycharm连接使用教程ATUODLpycharm连接 最近做yolo系列在visdrone上的目标检测,对算力有一定的要求。所以同学推荐了一款超级实用超级便宜的在线GPU加速服务器。 ATUODL话不多说,上连接https://www.autodl.com/home 1.租用服务器。选择你需要的型号。然后创建。 创建后会在控制台,我的实例中显示: 开机:
一、环境windows10+vs2017;cuda和cudnn;opencv440编译好的GPU版本;二、环境配置上述第一、二点这里就不做描述了,网上资料很多。这里重点描述怎么编译opencv440GPU版本。第一,从这里下载opencv主模块源码和额外模块源码;第二,安装cmake,我安装的是3.17.0版本;第三,解压下载好的源码,为了方便区分,将解压后主模块源码文件命名为opencv440_
1、编译到一半时出现 fatal error:can’t writePCH file: No space left on device 【问题分析】根据错误提示可知,是磁盘空间不足啦。因为pcDuino V3只有4GB nandflash空间,而编译出来的OpenCV占用空间非常大,所以出现该问题。【问题解决】在扩展的TF卡上编译。2、接上个问题。编译出现错误:cmake
        总所周知显卡的加速是很强的,最近在利用onnx进行网络模型的Visual Studio的部署过程中发现速度非常慢,查找了一系列的资料发现原来使用的是CPU在跑。这里有一个误区,之前以为装了opencv,装了cuda再使用以下代码就能进行opencv的cuda加速进行模型的推理。void load_net(cv::dnn::Net& n
准备阶段:安装vs跟opencv就不说了。安装cuda6.5:先用鲁大师之类的软件看看是什么显卡,然后在网上看看你的显卡是否支持cuda(https://developer.nvidia.com/cuda-gpus),其实一般的英伟达显卡都支持的了。再去下载cuda安装包(https://developer.nvidia.com/cuda-toolkit-archive),至于下载那个版本,这个不
OpenCV要使用GPU加速需要重新编译OpenCV。本人编译环境:win10 X64 vs2013 编译opencv-3.4.2 + contrib-3.4.2 + cuda10.0一、环境和资源准备1、计算机必须有支持CUDA 的NVIDIA GPU,并且装好了驱动程序。安装CUDA toolkit,本文使用的是CUDA10.0。下载地址:https://developer.nv
背景在文章编译安装LitmusRT遇到的问题中,我们已经编译安装了实时操作系统LitmusRT,并且能够正常启动它。现在,我们得编译安装一下GPU加速的第三方库OpenCL或OpenACC。这里再次注意不要用虚拟机安装英伟达驱动,因为虚拟机的显卡是虚拟出来的,加载不了英伟达的ko文件。所以我使用的是实验室的ubuntu16.04 64位台式机,此台式机已经装好了英伟达驱动、cuda10.2和10.
本人以前编译opencv4.2版本的DNN模块支持CUDA加速成功了,后来时隔一年,编译opencv4.4版本DNN模块使用CUDA加速一直编译失败,那叫个酸爽,如果看到此博客的你也在为编译opencv4.4版本的DNN模块使用CUDA加速而痛苦时,静下心来,按照我提供的思路一步一步走下去,你会成功的。CUDA安装与配置根据自己的GPU选择合适的CUDA版本,我的是GeForce GTX 1080
使用GPU加速要看在什么平台上使用,目前VS中是直接可以将函数指定在GPU上运行,但是要注意使用的场合,并不是什么情况下使用GPU都可以加速GPU是因为使用了显存,而显存是比内存大很多的,所以可以同时对很多数据进行处理,所以才能提高处理速度,但其实它的计算频率并不比内存上高,所以可以看出GPU能够加速的原理是:大容量并行计算(可能形容得不到位…..)。但是如果只对一个数据进行反复计算,这时候GP
转载 2023-10-17 20:06:00
323阅读
        在本教程中,您将学习如何将 OpenCV 的“dnn”模块与 NVIDIA GPU 结合使用,以将对象检测(YOLO 和 SSD)和实例分割(Mask R-CNN)的速度提高 1,549%。       上周,我们发现了如何配置和安装 OpenCV 及其“深度神经网络”(dnn)模块以使用 NVIDIA
转载 8月前
855阅读
前言最近刚出的opencv4.4.0也支持了yolov4,便尝试用opencv调用yolov4进行检测,做个记录。当然,yolov3、yolov4-tiny等也能调用,只需修改加载的cfg和weight文件就行。如果想使用GPU加速的话,需要安装opencvGPU版,可以参考:ubuntu下安装opencv,并配置DNN模块使用CUDA加速下载1、yolov4权重地址:百度网盘 提取码:2zfk
0.前言笔者最近参与了并行计算相关的比赛,赛题主要内容就是把一份C源码的程序利用2个节点、每节点64个核进行优化(当然也包括使用其他优化手段,但主要的加速在于多线程/多进程)。新手上路,和队友在OpenMP/MPI折腾了不少时间,现在把一些优化的技巧记录在这里。优化都不是绝对的,具体哪种方式适用于代码,还是要就事论事的吧。1.OpenMP的使用方式OpenMP最容易被想到的使用方式莫过于对循环进行
1 自动化测试过程中使用图片识别技术识别控件已经成为普遍需求。图片识别通常以HTTP的API形式提供给测试开发者,API的响应速度至关重要。 1 本文关注opencv中相关API的提速,服务端的其他提
原创 2022-07-25 08:14:21
2036阅读
# Java OpenCV GPU 加速:提升图像处理性能的利器 在图像处理领域,随着计算需求的增加,传统的 CPU 处理方式越来越难以满足实时处理的要求。此时,GPU 加速显得尤为重要。而 OpenCV,这个广泛使用的计算机视觉库,支持在 Java 中进行 GPU 加速操作。本文就带您深入了解如何在 Java 中使用 OpenCV 进行 GPU 加速,并提升图像处理的性能。 ## 什么是 O
原创 9天前
7阅读
  • 1
  • 2
  • 3
  • 4
  • 5