在这篇博文中,我将详细记录关于“android opencv 数字识别 基于opencv数字识别”这一技术问题的复盘过程,涵盖问题背景、错误现象、根因分析、解决方案、验证测试和预防优化,帮助大家更好地理解这一领域。 ## 问题背景 随着移动技术的发展,基于Android平台的应用在数字识别领域越来越受到重视,尤其是结合OpenCV这一强大图像处理库,可以有效提高数字识别的效率和准确性。然而,
原创 6月前
53阅读
项目概述:基于opencv实现信用卡数字识别,如下图所示:项目流程如下:1.处理模板,进行轮廓检测(检测外轮廓)2.得到当前轮廓的外接矩形,并将模板中的外接矩形切割出来,得到0-9对应的模板图片,并resize3.使用形态学操作对信用卡图片进行处理,得到轮廓4.根据矩形轮廓的长宽比挑选出信用卡的数字矩形框,并resize5.使用for循环依次检测代码如下:ocr_template_match.py
目录环境配置写在前面:三个程序第一个程序:训练第二个程序:图像预处理1.二值化2.去除小联通域(即噪点)3.roi提取4.将图片压缩为28*28格式5.完整代码第三个程序:测试 环境配置语言:python 平台:pycharm 库: cv2 numpy keras(这个需要先安装fensorflow库)写在前面:手写数字识别,是很多深度学习教程里的入门第一例,但是这些教程往往只告诉了你怎么去构造
转载 2023-11-06 18:37:53
91阅读
利用OpenCV可实现工业仪表设备的读数识别。仪表一般可分为两:数字式仪表和指针式仪表,本博文主要介绍一下数字式仪表识别的关键技术。下图是用软件模拟的数码管图片,本文识别的也就是图中的数字。一、图像定位 在实际的应用场景中,拍摄到的仪表区域很有可能会包含多余的背景部分,一个比较简单的解决方法是在拍摄时先行设定一个边界区域,提醒拍摄者将待识别的内容限制在区域中。后期识别时直接提取边界区域内的信息进
转载 2023-10-25 15:50:17
416阅读
数字识别和其他的所有计算机视觉相关的应用都会分为两个步骤:ROI抽取和识别。1. ROI抽取即将感兴趣的区域从原始图像中分离初来,这个步骤包括二值化,噪点的消除等 2. 识别即通过一些分类器将第一步中的结果进行分类,事实上属于机器学习的一个典型应用 数字识别步骤:1.先处理图像:  转换为灰度值(灰度图较之原始图片,将三个维度的矩阵变成了一个维度)  转换为
文章目录0 摘要1 准备工作(python)1.1 argparse用法1.2 zip 与 zip*用法1.3 sorted用法1.4 items()用法1.5 join()用法1.6 extend()用法1.7 format用法2 准备工作(opencv)2.1 cv2.getStructuringElement()2.2 cv2.resize()2.3 cv2.findContours()
转载 2023-11-06 20:26:04
62阅读
综述2012年iOS应用商店中发布了一个名为FuelMate的Gas跟踪应用。小伙伴们可以使用该应用程序跟踪汽油行驶里程,以及有一些有趣的功能,例如Apple Watch应用程序、vin.li集成以及基于趋势mpg的视觉效果。 燃料伴侣对此我们有一个新想法,该如何添加一个功能帮助我们在泵中扫描燃油,并在应用程序中输入燃油信息?让我们深入研究如何实现这一目标。技术对于这个项目的
转载 2024-01-09 19:45:08
64阅读
在开发Android应用时,数字边框识别数字边框的检测与识别)是一个常见而重要的任务,尤其是在需要自动化处理文档、票据等场景下。利用OpenCVAndroid应用实现数字边框识别,不仅可以提升用户体验,还能降低人工操作的成本。以下是我对“Android OpenCV数字边框识别”问题整理的复盘记录。 ### 背景定位 在一些场景中,如金融行业,需快速自动识别交易凭证的边框和数字信息,这直接
# Android OpenCV OCR 数字识别 在现代科技中,图像处理技术与光学字符识别(OCR)已成为许多应用程序的重要组成部分。本文将探讨如何在 Android 平台上使用 OpenCV 进行数字识别,帮助开发者更好地实现这些功能。 ## 什么是 OpenCV 和 OCR? OpenCV(Open Source Computer Vision Library)是一个开源计算机视觉库,
原创 2024-10-23 06:18:38
302阅读
1评论
在现代移动应用开发中,数字识别技术正逐渐成为众多应用场景的重要组成部分,尤其是在支付、验证码识别等领域。本篇博文将讲述如何使用 AndroidOpenCV 实现数字识别,分享我在这一过程中的一些思考和经验。 ### 背景描述 在我们进行数字识别时,通常会面临信号噪声、图像模糊等多个问题,因此需要采取一定的手段来提升识别的准确性。首先,可以将这个问题分为几个关键因素的维度:图像处理、模型训
前言    ?大四是整个大学期间最忙碌的时光,一边要忙着准备考研,考公,考教资或者实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。?对毕设有任何疑问都可以问学长哦
【实验项目名称】 手写数字特征提取方法与实现 【实验目的】 通过手写数字特征的提取,了解数字的特征提取方法,掌握特征匹配准则。 【实验原理】 读取标准化后的数字0~9,二值化,对每个数字进行等分区域分割,统计 每个区域内的黑色像素点的个数,即为特征初值。采用欧式距离的模板匹配 法判断数字。 【实验要求】 给定数字0-9的原始样本集合,每个数字都有10个大小为240*240的样本 图像。
2021SC@SDUSC一、背景介绍当我们学习编程的时候,编写的第一个程序一般是实现打印"Hello World"。而机器学习(或深度学习)的入门教程,一般都是 MNIST 数据库上的手写识别问题。原因是手写识别属于典型的图像分类问题,比较简单,同时MNIST数据集也很完备。MNIST数据集作为一个简单的计算机视觉数据集,包含一系列如图1所示的手写数字图片和对应的标签。图片是28x28的像素矩阵,
Python版本是Python3.7.3,OpenCV版本OpenCV3.4.1,开发环境为PyCharm20.4 自定义函数手写数字识别OpenCV提供了函数cv2.KNearest()用来实现K近邻算法,在OpenCV中可以直接调用该函数。为了进一步了解K近邻算法及其实现方式,本节首先使用Python和OpenCV实现一个识别手写数字的实例。 eg:编写程序,演示K近邻算法。 在本例中,0~9
九、项目实战-信用卡数字识别(融合前面的图像操作)轮廓检测+轮廓外接矩形+模板匹配+resize成一样的大小 预处理:对轮廓做过滤操作,保存下数字的轮廓,根据长宽比例过滤 先在eclipse中配置Python环境,注意版本匹配这里下载的eclipse是eclipse-java-2019-03 在Eclipse中添加Python的环境 Eclipse -> Help -> Install
转载 2024-03-14 19:58:51
38阅读
 最近要做数字识别这块,但是自己又完全不懂这个,网上搜资料搜了好多,但是都没找到完整代码。只有自己慢慢搞,下面写下自己的过程以及代码有不好的地方希望大神可以指出,大家相互交流下。有需要完整代码的可以自行下载(源码里面 是需要自己做一个图片的,没有图片,不能直接运行)git 源码 我是在VS2013 和opencv 2.4.9 我要做的是把0123456789 印刷体数字识别出来
转载 2023-07-16 19:27:43
228阅读
项目预览: QWQ 那么第一步先梳理一下我们的项目逻辑:一. 找素材 (数字模板,银行卡照片等) 二. 识别数字则需要我们对数字模板进行处理。因此下面我们开始处理数字模板。 1.将数字模板处理成灰度图,再进行二值处理.这样图像就变成双通道图. 2.计算模板边缘轮廓.将数字模板每个数字的轮廓计算出来. 3.画出每个数字轮廓的外接矩形。最后将其分别保存到一个字典里. 三. 数字模板处理完成,已经洗净切
转载 2024-03-23 20:50:51
143阅读
数字识别和其他的所有计算机视觉相关的应用都会分为两个步骤:ROI抽取和识别。1. ROI抽取即将感兴趣的区域从原始图像中分离初来,这个步骤包括二值化,噪点的消除等2. 识别即通过一些分类器将第一步中的结果进行分类,事实上属于机器学习的一个典型应用 数字识别步骤:1.先处理图像:  转换为灰度值(灰度图较之原始图片,将三个维度的矩阵变成了一个维度)  转换为二
最近要做数字识别这块,但是自己又完全不懂这个,网上搜资料搜了好多,但是都没找到完整代码。只有自己慢慢搞,下面写下自己的过程以及代码有不好的地方希望大神可以指出,大家相互交流下。有需要完整代码的可以自行下载源码  (源码里面 是需要自己做一个图片的,没有图片,不能直接运行)我是在VS2013 和opencv 2.4.9 环境下实现的。关于环境的搭建和配置以及软件的下载可以可以参考
转载 2023-10-03 13:54:10
170阅读
一、环境准备Python语言包OpenCV-python开发包OpenCV DNN模块OpenCV ML模块pycharm2019项目地址:https://github.com/zxinyang38/opencv-二、结果预览从给定的印刷品图像进行数字识别。三、实验步骤1、EAST TEXT对象检测模型(使用EAST网络模型实现文字区域检测)EAST网络架构加载获取网络各层信息 east_text
转载 2024-02-09 23:22:27
101阅读
  • 1
  • 2
  • 3
  • 4
  • 5