人脸检测是 OpenCV 的一个很不错的功能, 它是人脸识别的基础。 什么是人脸识别呢?       其实就是一个程序能识别给定图像或视频中的人脸。 实现这一目标的方法之一是用一系列分好类的图像来“训练” 程序, 并基于这些图像来进行识别。这就是 OpenCV 及其人脸识别模块进行人脸识别的过程。&nbs
实现以下功能: 交互式对话框:请选择要执行的动作 人脸采集:打开摄像头,采集照片,保存训练模型人脸识别: 打开摄像头,采集照片,预识别;输入图像的路径,图像识别输出结果: 找到匹配的对象,输出名字;未找到匹配的对象,提示:人脸采集并保存训练模型 程序 /* 交互式对话框:请选择要执行的动作 1.人脸采集: 打开摄像头,采集照片,保存
先上效果图上面是几张效果图,根据检测到的人脸识别该人是谁。首先是开发环境:AndroidStudio3.0    NDKr12   Gradle4.1    官方的Opencv3.441.在官网 https://opencv.org/releases/ 下载Opencv的SDK,本人用的是3.44的版本,因为opencv好像3
一点背景知识OpenCV 是一个开源的计算机视觉和机器学习库。它包含成千上万优化过的算法,为各种计算机视觉应用提供了一个通用工具包。根据这个项目的关于页面,OpenCV 已被广泛运用在各种项目上,从谷歌街景的图片拼接,到交互艺术展览的技术实现中,都有 OpenCV 的身影。OpenCV 起始于 1999 年 Intel 的一个内部研究项目。从那时起,它的开发就一直很活跃。进化到现在,它已支持如 O
基于 OpenCV人脸识别 一点背景知识OpenCV 是一个开源的计算机视觉和机器学习库。它包含成千上万优化过的算法,为各种计算机视觉应用提供了一个通用工具包。根据这个项目的关于页面,OpenCV 已被广泛运用在各种项目上,从谷歌街景的图片拼接,到交互艺术展览的技术实现中,都有 OpenCV 的身影。OpenCV 起始于 1999 年 Intel 的一个内部研究项目。从那时起,它的开
转载 2023-08-25 19:19:59
197阅读
OpenCV实现人脸检测人脸识别人脸检测简介用OpenCV实现人脸检测1.加载Haar或LBP对象或人脸检测2.访问摄像机3.用Haar或LBP检测器来检测对象4.检测人脸 人脸识别人脸检测简介人脸识别是对已知人脸进行分类的过程。人脸识别通常包括四个主要步骤:人脸检测:它是在图像中定位人脸区域的过程。(不关心人是谁,只关心是不是人脸)。人脸预处理:这步是调整人脸图像,使其看起来更加清楚,且相
Python 实现人脸识别技术人脸识别技术在现代社会中被广泛应用,如手机解锁、安防监控等领域。Python作为一门易于上手的编程语言,也可以用来实现人脸识别技术。人脸识别的基本原理人脸识别系统的基本流程包括:人脸检测:通过计算机视觉算法从一个图像中识别出一个或多个面部区域。面部对齐:调整脸部区域的位置和姿态,使所有脸部数据具有相同的位置和大小。特征提取:使用机器学习算法从面部图像中提取面部的特征信
本篇介绍图像处理与模式识别中最热门的一个领域——人脸检测(人脸识别)。人脸检测可以说是学术界的宠儿,在不少EI,SCI高级别论文都能看到它的身影。甚至很多高校学生的毕业设计都会涉及到人脸检测。当然人脸检测的巨大实用价值也让很多公司纷纷关注,很多公司都拥有这方面的专利或是开发商业产品出售。    在OpenCV中,人脸检测也是其热门应用之一。在OpenCV的特
OpenCV -2 -人脸识别文章目录OpenCV -2 -人脸识别@[toc]人脸识别的介绍实现人脸识别【理论】使用OpenCV来实现人脸识别【直接上代码实现】图像对比小结使用语言:Java 1.8 操作系统:windows x64 OpenCV:4.1.1人脸识别的介绍人脸识别是一个平常很经常看到,却又很不了解的技术。各种手机的摄像头,自拍或者监控上面经常会出现这个东东,但是关于如何实现的,可
# 实现Opencv人脸识别Android应用教程 ## 整体流程 下面是实现Opencv人脸识别Android应用的整体流程: | 步骤 | 操作 | |-----|------| | 1 | 导入Opencv库到Android项目中 | | 2 | 编写人脸检测的代码 | | 3 | 在Android界面中展示检测到的人脸 | ## 操作步骤 ### 步骤一:导入Opencv库到An
一、准备工作 本次实例的anaconda 环境 (有需要的自己导入anaconda) 链接:https://pan.baidu.com/s/1IVt2ap-NYdg64uHSh-viaA 提取码:g7ss python -- 3.6.9 tensorflow --1.14.0 opencv -- 3.4.2 keras -- 2.2.4 scikit-learn -- 0.21.2 目录结构 --
##先来张人脸识别效果图:##1、概述人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部的一系列相关技术,通常也叫做人像识别、面部识别。##2、人脸识别步骤1 人脸图像采集及检测 2 人脸图像预处理 3 人脸图像特征提取以及匹配与识别##3、 人脸识别的方法在Open
转载 2023-09-29 19:18:45
348阅读
1 基础我们使用机器学习的方法完成人脸检测,首先需要大量的正样本图像(面部图像)和负样本图像(不含面部的图像)来训练分类器。我们需要从其中提取特征。下图中的 Haar 特征会被使用,就像我们的卷积核,每一个特征是一 个值,这个值等于黑色矩形中的像素值之后减去白色矩形中的像素值之和。Haar特征值反映了图像的灰度变化情况。例如:脸部的一些特征能由矩形特征简单的描述,眼睛要比脸颊颜色要深,鼻梁两侧比鼻
        人脸识别在当前广泛应用于日常生活的各个方面,随着技术的进步,将来人脸应用将会越来越深入到日常生活中来.作为开发者,我们应该掌握一些应用知识,本文介绍一种使用opecv自带的人脸算法,实现人脸简单的识别.该方法适用于,要求准确率不高的场景,比如签到.考勤等场景.本文简单介绍使用opencv进行人脸识别的思路及方法。一.编程前准备: 
转载 2023-08-29 13:33:33
223阅读
用Python实现基于haarcascade文件的动态人脸检测    windows环境:windows7 SP1 64位    EXE安装:Python3.6.2(如图)     采用的训练文件是OpenCV文件库里提供的haarcascade_frontalface
转载 2023-10-07 15:43:15
60阅读
上一节讲到人脸检测,现在讲一下人脸识别。具体是通过程序采集图像并进行训练,并且基于这些训练的图像对人脸进行动态识别人脸识别前所需要的人脸库可以通过两种方式获得:1.自己从视频获取图像   2.从人脸数据库免费获得可用人脸图像,如ORL人脸库(包含40个人每人10张人脸,总共400张人脸),ORL人脸库中的每一张图像大小为92x112。若要对这些样本进行人脸识别必须要在包含人脸
转载 2023-07-31 23:29:55
409阅读
1.1.介绍Introduction从OpenCV2.4开始,加入了新的类FaceRecognizer,我们可以使用它便捷地进行人脸识别实验。本文既介绍代码使用,又介绍算法原理。(他写的源代码,我们可以在OpenCVopencv\modules\contrib\doc\facerec\src下找到,当然也可以在他的github中找到,如果你想研究源码,自然可以去看看,不复杂)目前支持的算法有Ei
目录前言第一章 OpenCV介绍第二章 功能描述2.1 对已有的数据进行检测2.2 陌生人检测并发出警告2.3 保存陌生人的视频2.4 输入图片进行检测2.5 现场录用信息第三章 功能实现3.1 截取人脸图片3.2 对图片进行处理3.3 进行训练3.4 进行预测3.5 实时预测第四章 出现的问题源码获取前言学习了图像识别,都没有具体的做出一个项目。现在的人脸识别很火,
目录一:前言二:人脸识别案例 实现步骤及完整代码步骤1 灰度化处理步骤2 将灰度图再次进行 行列压缩 步骤3 直方图均值化步骤4 使用模型 对每一个像素点遍历 图像甄别人脸识别案例 源码分享结果测试:可对人脸框选识别三:车辆识别案例 级联分类器 具体实现一:前言本次人脸识别技术使用到的是级联分类器对于级联分类器,如果想要自己训练模型可以参考这篇文章【OpenCV】 级联分类器训
face_recognition是世界上最简洁的人脸识别库,你可以使用Python和命令行工具提取、识别、操作人脸。face_recognition的人脸识别是基于业内领先的C++开源库 dlib中的深度学习模型,用Labeled Faces in the Wild人脸数据集进行测试,有高达99.38%的准确率。但对小孩和亚洲人脸识别准确率尚待提升。face_recognition可以产生很多有
  • 1
  • 2
  • 3
  • 4
  • 5