学习笔记|Pytorch使用教程01本学习笔记主要摘自“深度之眼”,做一个总结,方便查阅。 使用Pytorch版本为1.2。Tensor的概念Tensor的创建一:直接创建Tensor的创建二:依据数值创建Tensor的创建三:依据概率创建作业1.Tensor的概念1.1.张量是一个多维数组,它是标量、向量、矩阵的高维拓展。1.2 Tensor与Variable1.3 Tensor2.Tensor
由于tensorflow的官网是需要科学上网才能访问的,所以建议先看中文的学习网站http://www.tensorfly.cn,这里面对官网的学习指导的中文版,学起来蛮好的。下面是对Tensorflow基础知识进行一下汇总1:Tensor 张量张量是Tensorflow管理数据的形式,在Tensorflow中所有的数据都通过张量的形式来表示,在Python中张量Tensor是Numpy格式的多维
转载 2024-06-15 17:36:40
40阅读
Numpy的简介            NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。NumPy 是一个运行速度非常快的数学库,主要用于数组计算,包含:一个强大的N维数组对象 ndarray广播功能函数整合 C/C++
参考文献https://github.com/zergtant/pytorch-handbook/blob/master/chapter1/1.3-deep-learning-with-pytorch-60-minute-blitz.md1,为什么要创建张量?torch.Size`` 返回值是 tuple类型, 所以它支持tuple类型的所有操作.任何 以``_`` 结尾的操作都会用结果替换原变量
转载 2024-05-11 18:48:35
165阅读
PyTorch框架学习三——张量操作一、拼接1.torch.cat()2.torch.stack()二、切分1.torch.chunk()2.torch.split()三、索引1.torch.index_select()2.torch.masked_select()四、变换1.torch.reshape()2.torch.transpace()3.torch.t()4.torch.squeeze
转载 2024-06-24 21:00:13
110阅读
张量(Tensor)几何代数中定义的张量是基于向量和矩阵的推广,通俗一点来理解,我们可以将标量视为零阶张量,矢量视为一阶张量,那么矩阵就是二阶张量张量PyTorch中,张量Tensor是最基础的运算单位,与NumPy中的NDArray类似,张量表示的是一个多维矩阵。不同的是,PyTorch中的Tensor可以运行在GPU上,而NumPy的NDArray只能运行在CPU上。由于Tensor能在G
张量是TensorFlow中数据的载体。 Tensorflow中的“Tensor”表示张量,其实就是多维数组。Python中的列表listNumPy中的数组对象ndarray他们都可以作为数据的载体区别:1. Python列表(list) * 元素可以使用不同的数据类型,可以嵌套 * 在内存中不连续存放,是一个动态的指针数组 * 读写效率低,占用内存空间大 * 不适合做数
转载 2023-12-19 20:15:43
166阅读
张量对象张量(Tensor)是一种特殊结构,出于并行计算的需要设计,可在GPU等硬件加速器上运行。类似于数组和矩阵,用于对模型的输入输出,模型参数进行编码。 Pytorch中的Tensor类似于Numpy中的ndarray,二者可相互转换,且共享底层内存,可理解为同一数据引用的不同表现形式。修改其中之一会同时修改另一方。张量初始化可由现有数据对象创建张量,或根据维度创建:data = [[1, 2
转载 2023-08-21 09:16:40
162阅读
前言PyTorch 于 2016 年首次推出。在 PyTorch 之前,深度学习框架通常专注于速度或可用性,但不能同时关注两者。PyTorch将这两者相结合,提供了一种命令式和 Python编程风格,支持将代码作为模型,使调试变得容易,支持 GPU 等硬件加速器。PyTorch 是一个 Python 库,它通过自动微分和 GPU 加速执行动态张量计算。它的大部分核心都是用 C++ 编写的,这也是
转载 2023-09-27 22:27:49
298阅读
PyTorch框架学习(二) — 张量操作与线性回归1 张量的操作1.1 拼接1.2 切分1.3 索引1.4 变换2 张量的数学运算2.1 加法运算2.2 减法运算2.3 哈达玛积运算(element wise,对应元素相乘)2.4 除法运算2.5 特殊运算 torch.addcdiv2.6 特殊运算 torch.addcmul2.7 幂函数2.7 指数函数2.8 对数函数2.9 三角函数2.1
转载 2023-09-14 22:03:42
157阅读
Pytorch简介Pytorch是一个基于Python的深度学习框架,可以代替Numpy在GPU上进行科学计算。什么是TensorTensor即张量,类似于Numpy的ndarrays,tensor可以在GPU上使用以加速计算。Pytorch创建张量的常用方法创建一个未初始化的张量,其值不确定:# 初始化值不确定,由所分配内存的当前值决定 x = torch.empty(5, 3) print(x
一、张量tensor张量的三个特征:秩、轴、形状张量的秩是指索引的个数,轴是指每一个维度的最大的索引的值,张量的形状提供了维度和索引的数量关系。经常需要对张量进行重塑t.reshape(1,9)利用上述函数可以将张量按任意想要的形状进行重塑下面我们考虑具体的情况,将张量带入CNN的输入中这里的张量的秩为4,即[B,C,H,W],其中后两个维度作为每一个像素的长和宽的索引,第三个维度作为RBG或者灰
Pytorch 零基础学习系列 之 创建张量在深度学习中,神经网路结构是基础;在Pytorch中,张量是构建神经网络的基础 。从本质上讲,Pytorch就是一个处理张量的库。一个张量可以是一个数字、向量、矩阵或者任何n维数组。比较重要的一点是张量可以在GPU上进行计算。例如,下图分别展示了1维张量,2维张量和3维张量:如何创建一般张量?方法一(1) 导入 pytorch 和 numpyimport
张量操作一、张量的拼接与切分1.1 torch.cat()功能:将张量按维度dim进行拼接tensors:张量序列dim:要拼接的维度1.2 torch.stack()功能:在新创建的维度的上进行拼接tensors:张量序列dim:要拼接的维度(如果dim为新的维度,则新增一个维度进行拼接,新维度只能高一维)           &nbs
转载 2023-07-28 19:31:33
205阅读
一般一维数组,我们称之为向量(vector),二维数组,我们称之为矩阵(matrix);三维数组以及多位数组,我们称之为张量(tensor)。    在介绍张量分解前,我们先看看矩阵分解相关知识概念。 一、基本概念矩阵补全(Matrix Completion)目的是为了估计矩阵中缺失的部分(不可观察的部分),可以看做是用矩阵X近似矩阵M,然后用X中的元素作为矩阵M中不
转载 2024-01-23 17:02:49
358阅读
创建张量1TensorFlow中的Tensor表示张量,其实就是多维数组。在此之前,我们还学习过python中的列表listNumpy中的数组对象ndarray 它们也都可以作为数据的载体,那么它们有何区别呢?Python列表(list)元素可以使用不同的数据类型,可以嵌套在内存中不连续存放,是一个动态的指针数据读写效率低,占用内存空间大不适合做数值计算Numpy数组(ndarray)元素数据类型
PyTorch是一个基于Python的科学计算库,它主要针对两类人群:NumPy的替代品,可以利用GPU的性能进行计算;深度学习研究人员,提供了最大的灵活性和速度,以深度学习为核心。在PyTorch中,张量(Tensor)是最基本的数据结构之一,可以看作是一个多维数组张量NumPy中的数组非常类似,但是张量可以在GPU上运行,这使得它们比NumPy数组更快。下面是一些关于张量的基本使用方法:创
原创 2023-05-05 20:08:35
105阅读
# PyTorch 张量入门指南 ## 引言 PyTorch 是一个基于 Python 的科学计算库,它广泛应用于深度学习领域。在 PyTorch 中,张量(tensor)是最基本的数据结构,用于存储和操作多维数组。本文将向你介绍如何在 PyTorch 中使用张量,帮助你快速入门。 ## 张量概述 在进行深入学习之前,我们首先需要了解什么是张量张量是一种多维数组,与 Numpy 中的数组类似
原创 2023-12-15 11:14:39
47阅读
张量(Tensor)简单介绍Pytorch最基本的操作对象是Tensor(张量),它表示一个多维矩阵,张量类似于NumPy的ndarrays ,张量可以在GPU上使用以加速计算。生成数据的常用方法以及基本数据类型:构造一个随机初始化的矩阵torch.rand全 0 矩阵torch.zeros全 1 矩阵orch.ones直接从数据构造张量torch.tensor 32位浮点型 
Pytorch基础——张量1、认识张量2、创建torch数据3、张量的形状4、张量的索引、切片5、张量形状的改变6、张量的广播机制7、如何将numpy转换成Tensors8、常用操作8.1、torch.cat()8.2、torch.squeeze、torch.unsqueeze8.3、torch.view 1、认识张量Tensors(张量) Tensors张量,与numpy中的ndarray类似
  • 1
  • 2
  • 3
  • 4
  • 5