NSGA相比于普通遗传算法,该算法在选择算子执行之前根据个体之间的支配关系进行了分层。其选择算子、交叉算子和变异算子与简单遗传算法没有区别。而NSGAII和NSGA相比,它使用了精英策略,即将父代种群与其产生的子代种群组合,共同竞争产生下一代种群,有利于保持父代中的优良个体进入下一代,并通过对种群中所有个体的分层存放,使得最佳个体不会丢失,迅速提高种群水平;提出了拥挤度和拥挤度比较算子,代替了需要
1.nsgaⅢ算法总框架nasga3算法框架分为三个部分: (1)初始化种群,随机产生种群规模为N的父代种群pt (2)更新种群,pt种群通过交叉变异产生新的规模为N的子代种群qt(SBX,多项式变异) (3)选择操纵,通过选择机制从rt=pt∪qt(种群规模为2N)选出优秀的规模为N的种群1.1更新操作1.SBX 2.多项式变异1.2 选择机制1.第一步采用非支配排序将种群RT分成不同的非支配曾
转载 2024-06-05 14:03:10
790阅读
一看草稿里文章都堆积几十篇了,清理库存1~一直都想把关于python的知识点总结一下,因为基础不牢,地动山摇啊。切忌眼高手低,好记性总是不如烂笔头,趁着十一假期,就把平常参考资料中的琐碎知识点总结总结。别人有大众的菜鸟教程,我这也算是自己的菜鸟教程吧。。。。。2 、Python基础语法2.1缩进规则行尾的“:”表示下一行代码缩进的开始。缩进只使用空白实现,必须使用4个空格来表示每级缩
1、NSGA-II算法原理NSGA-II算法全称非支配排序遗传算法II(Non-dominated Sorting Genetic Algorithm II, NSGA-II)。该算法是由 NSGA 改进而来的,用于解决复杂的、多目标优化问题。NSGA-II在NSGA的基础上引入了非支配排序、拥挤度、拥挤度比较算子和精英策略。下面将详细介绍非支配排序、拥挤度、拥挤度比较算子和精英策略三种方法。(1
2.使用Python解释器2.1 调用解释器Python解释器通常安装/usr/local/bin/python3.7 在那些可用的机器上; 放入/usr/local/binUnix shell的搜索路径可以通过输入命令来启动它:python3.7shell指令,由于选择解释器所在的目录是一个安装选项,其他地方也是可能的; 请咨询您当地的Python大师或系统管理员。
转载 2023-12-01 11:14:07
169阅读
NSGA3处理离散变量代码python 在项目中,我遇到了一个有趣的挑战:使用非支配排序遗传算法III(NSGA-III)处理离散变量。这个问题不仅影响了算法的性能,还使得最终的优化结果大打折扣。我们这一部分将通过详细分析问题背景、错误现象、根因分析、解决方案、验证测试以及预防优化来深化理解。 ### 问题背景 当我开始使用NSGA-III进行多目标优化时,期望能够处理多种类型的变量,包括连
原创 5月前
52阅读
( 安装软件一定看官方文档,别自己瞎鼓捣,浪费时间;官方文档在实际安装中出现问题了,再寻求博客等第三方找线索,但也不是盲目的操作。)ns-3 官方链接:https://www.nsnam.org/wiki/Installation切记:不要改ubuntu下的下载链接镜像sources.list,可以一步一步执行完成依赖环境的安装备注:pip无法定位,通过sudo apt install pytho
转载 2024-01-29 12:13:50
257阅读
5种内置数据结构:列表、元组、字典、集合、字符串。列表、字典、字符串三种被称为线性结构。针对线性结构的操作有:切片、封包和解包、成员运算符、迭代。针对数据结构的操作有解析式:解析式分为列表解析、生成器解析、集合解析和字典解析。后面三种是Python3.x特有的。基本框架如下:一、列表:Python中最具灵活性的有序集合对象类型列表可包含任何种类的对象:数字、字符串、字典、集合甚至其他列表,这个特性
目录1.VGG网络简介一.VGG概述 二.VGG结构简介2.VGG的优点3.VGG亮点所在计算量感受野1.VGG网络简介一.VGG概述VGGNet是牛津大学视觉几何组(Visual Geometry Group)提出的模型,该模型在2014ImageNet图像分类与定位挑战赛 ILSVRC-2014中取得在分类任务第二,定位任务第一的优异成绩。VGGNet突出的贡献是证明了很小的卷积,通
在现代优化问题中,遗传算法与多目标优化越来越受到关注。NSGA-III(非支配排序遗传算法第三版)作为一种流行的多目标优化算法,其有效处理连续变量非常好,而对离散变量的支持则相对薄弱。本文将详细探讨如何将离散变量列表与NSGA-III结合,进行目标编码优化。 ## 问题背景 在许多实际应用中,优化问题不仅涉及连续变量,还往往包含离散变量。例如,在配置机器学习模型的超参数、选择适当的特征或者进行
原创 5月前
77阅读
什么是 CGICGI 目前由 NCSA 维护,NCSA 定义 CGI 如下:CGI(Common Gateway Interface),通用网关接口,它是一段程序,运行在服务器上如:HTTP服务器,提供同客户端 HTML 页面的接口。网页浏览为了更好的了解 CGI 是如何工作的,我们可以从在网页上点击一个链接或 URL 的流程:1、使用你的浏览器访问 URL 并连接到 HTTP web 服务器。2
文章目录前言一、什么是NSGA-II?二、学习NSGA-II1.快速非支配排序算法2.密度估计3.拥挤比较算子4.主循环5.代码6.总结 前言NSGA-II适用于复杂的多目标优化问题,是K-Deb教授在2000年在一篇paper《MOEAs — A fast and elitist multi-objective genetic algorithm: nsga2》提出。Keywords: opt
转载 2023-11-30 12:53:29
177阅读
   ????欢迎来到本博客❤️❤️???博主优势:???博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。???本文内容如下:??? ⛳️赠与读者??做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得
   ????欢迎来到本博客❤️❤️???博主优势:???博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。???本文内容如下:??? ⛳️赠与读者??做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得
        定位元素时经常会出现定位不到元素,这时候我们需要观察标签的上下文,一般情况下这些定位不到的元素存放在了frame或者放到窗口了,只要我们切入进去就可以很容易定位到元素。处理frame时主要使用到switch_to.frame()(切入frame也可以些写成switch_to_frame,不过这个已经用的很少了)和switch_to_defau
1. 非支配排序遗传算法(NSGA)1995年,Srinivas和Deb提出了非支配排序遗传算法(Non-dominated Sorting Genetic Algorithms,NSGA)。这是一种基于Pareto最优概念的遗传算法。(1) 基本原理NSGA与简单的遗传算法的主要区别在于:该算法在选择算子执行之前根据个体之间的支配关系进行了分层。其选择算子、交叉算子和变异算子与简单遗传算法没有区
​​https://zhuanlan.zhihu.com/p/144807879​​
原创 2022-06-10 00:19:30
652阅读
   ????欢迎来到本博客❤️❤️???博主优势:???博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。???本文内容如下:??? ⛳️赠与读者??做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得
# 如何在Python中实现NSGA-II算法 非支配排序遗传算法II(NSGA-II)是一种常用于多目标优化问题的算法。本教程将逐步教你如何在Python中实现这一算法。让我们先看一下整个流程,然后再深入到每一步的具体实现中。 ## 整体流程 下面是实现NSGA-II算法的主要步骤: | 步骤 | 说明 | |------|-------
原创 9月前
340阅读
# 使用Python实现NSGA-II算法 ## 引言 随着科学技术的快速发展,多目标优化问题在多个领域中的应用日益广泛,如工程设计、经济学、环境保护等。而非支配排序遗传算法 II (NSGA-II) 是一种流行的多目标优化算法,其以其优秀的性能和简单性而受到青睐。本篇文章将深入探讨NSGA-II算法,并通过Python实现一个简单示例,帮助大家更好地理解这一算法。 ## NSGA-II算法
原创 9月前
158阅读
  • 1
  • 2
  • 3
  • 4
  • 5