目录ELMO模型论文摘要核心思想模型细节GPT模型BERT模型ELMO模型论文摘要本文作者推出了一种新的基于深度学习框架的词向量表征模型,这种模型不仅能够表征词汇的语法和语义层面的特征,也能够随着上下文语境的变换而改变。简单来说,本文的模型其实本质上就是基于大规模语料训练后的双向语言模型内部隐状态特征的组合。实验证明,新的词向量模型能够很轻松的与NLP的现有主流模型相结合,并且在六大NLP任务的结
1 前言BERT模型的使用可以分为两种形式:第一种使用方法直接将语句序列输入BERT模型获取特征表示,BERT模型一共提供十二层不同的特征向量输出,随层数的递进,特征表示从专于词义表示到专于语义表示而有所区别,此时BERT模型相当于静态的word2vector模型,仅用于特征表示,关于如何获取BERT预训练模型及如何使用第一种方法,可以参考我的博客。第二种则是更为常用的将BERT模型作为深度学习网
转载
2024-06-16 17:10:25
90阅读
1.什么是bertbert原文中文翻译版,论文地址。腾讯一篇对bert解读的文章,从零构建BERT,文章地址。2.bert的使用uer-pyUER-py全称是Universal Encoder Representations,UER-py是一个在通用语料预训练以及对下游任务进行微调的工具包。github项目地址。uer的一些教程,知乎教程(bert做情感分类、序列标注)。uer分类代码的介绍,参考
前面已经介绍了transformer,理解了transformer,那么理解bert就简单多了。对transformer不是很了解的可以跳转到bert的核心代码解读在,本文主要介绍训练实例。Bert简介BERT来自Google的论文Pre-training of Deep Bidirectional Transformers for Language Understanding,BERT是”Bid
转载
2024-08-22 13:11:25
110阅读
在深度学习中,文本匹配模型可以分为两种结构:双塔式和交互式。双塔式模型也称孪生网络、Representation-based,就是用一个编码器分别给两个文本编码出句向量,然后把两个向量融合过一个浅层的分类器;交互是也称Interaction-based,就是把两个文本一起输入进编码器,在编码的过程中让它们相互交换信息,再得到最终结果。如下图:双塔式模型中有监督句向量比较主流的方案是Facebook
转载
2024-01-16 16:41:09
1239阅读
作者:陈安东,中央民族大学,Datawhale成员对于刚入门NLP的伙伴来说,看到NLP任务很容易觉得眼花
转载
2022-07-30 00:23:19
457阅读
作者:张贤,哈尔滨工程大学本文约7000字,NLP专栏文章,建议收藏阅读审稿人:Jepson,Datawhale成员,毕业于中国科学院,目前在腾讯从事推荐算法工作。
结构总览
一、前言2018 年是机器学习模型处理文本(或者更准确地说,自然语言处理或 NLP)的转折点。我们对这些方面的理解正在迅速发展:如何最好地表示单词和句子,从而最好地捕捉基本语义和关系?此外,NLP 社区已经发布了非常
转载
2022-08-29 20:02:31
734阅读
一、BERT整体结构Transformer的Encoder,而没有用其Decoder,我想是因为BERT是一个预训练模型,只要学到其中语义关系即可,不需要去解码完成具体的任务。整体架构如下图:多个Transformer Encoder一层一层地堆叠起来,就组装成了BERT了,在论文中,作者分别用12层和24层Transformer Encoder组装了两套BERT模型,两套模型的参数总数分别为11
转载
2024-01-10 21:09:02
376阅读
本文是追一科技潘晟锋基于谷歌论文为 AI 科技评论提供的解读稿件。 最近谷歌研究人员通过新的BERT模型在11项NLP任务中夺得STOA结果,这在自然语言处理学界以及工业界都引起了不小的热议。作者通过在33亿文本的语料上训练语言模型,再...
转载
2018-10-29 10:17:42
270阅读
BERT模型理论解读序言BERT(Bidirectional Encoder Representations from Transformers)是一个语言表达模型(language representation model)。在《BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding》一文中
转载
2024-03-27 22:01:13
20阅读
最近承接了项目要复现tiny_Bert。所以在这里用文章记录自己学到的。这篇文章是前置,主要介绍bert原理。 下一篇文章介绍tinybert的原理和训练模型介绍:BERT概述: 如果要介绍tinyBERT,首先我们需要了解BERT模型。(了解BERT模型之前,希望你对Transformer结构已经有了基本的了解。Transformer: Attention is All
转载
2024-08-05 18:12:39
110阅读
一文彻底搞懂BERT 一、什么是BERT?没错下图中的小黄人就是文本的主角Bert ,而红色的小红人你应该也听过,他就是ELMo。2018年发布的BERT 是一个 NLP 任务的里程碑式模型,它的发布势必会带来一个 NLP 的新时代。BERT 是一个算法模型,它的出现打破了大量的自然语言处理任务的记录。在 B
转载
2023-09-14 12:47:56
176阅读
# 如何实现 NLP BERT
在自然语言处理(NLP)领域,BERT (Bidirectional Encoder Representations from Transformers) 是一种强大的预训练模型,可以用来解决多种语言处理任务,如文本分类、命名实体识别等。如果你是一名刚入行的小白,本文会为你详细介绍如何实现 BERT 模型。
## 整体流程
首先,让我们看看整个实现流程。下表展
原创
2024-10-16 05:22:26
23阅读
我们下载下来的预训练的bert-base模型的大小大概是394M左右,但我们在自己数据集上经过fine-tuning后的bert-bae模型大小大约是1.2G, 整整是Bert-base模型的3倍,让我们来看看到底是什么原因造成的,首先我们可以通过下一段代码来输出我们训练好的模型和官方提供的Bert-base模型的参数变量。1:官方提供的Bert-base模型参数信息如下:
from tensor
转载
2024-07-27 15:03:37
61阅读
这一章我们来聊聊在中文领域都有哪些预训练模型的改良方案。Bert-WWM,MacBert,ChineseBert主要从3个方向在预训练中补充中文文本的信息:词粒度信息,中文笔画信息,拼音信息。与其说是推荐帖,可能更多需要客观看待以下'中文'改良的在实际应用中的效果~
这一章我们来聊聊在中文领域都有哪些预训练模型的改良方案。Bert-WWM,MacBert,C
转载
2024-04-25 06:34:47
128阅读
BERT基于所有层中的左、右语境进行联合调整,来预训练深层双向表征。只需要增加一个输出层,就可以对预训练的BERT表征进行微调,就能够为更多的任务创建当前的最优模型。1.预训练模型BERT是一个预训练的模型,那么什么是预训练呢?举例子进行简单的介绍 假设已有A训练集,先用A对网络进行预训练,在A任务上学会网络参数,然后保存以备后用,当来一个新的任务B,采取相同的网络结构,网络参数初始化的时候可以
转载
2024-04-01 07:19:01
69阅读
结构总览一、前言2018 年是机器学习模型处理文本(或者更准确地说,自然语言处理或 NLP)的转折点。我们对这些方面的理解正在迅速发展:如何最好地表示单词和句子,从而最好地捕捉基本语义和关系?此外,NLP 社区已经发布了非常强大的组件,你可以免费下载,并在自己的模型和 pipeline 中使用(今年可以说是 NLP 的 ImageNet 时刻,这句话指的是多年前类似的发展也加速了 机器学习在计算机
原创
2021-04-06 19:46:37
938阅读
用BERT做机器阅读理解。
原创
2022-10-18 14:53:25
401阅读
↑↑↑关注后"星标"Datawhale每日干货&每月组队学习,不错过Datawhale干货作者:陈安东,中央民族大学,Datawhale成员对于刚入门NLP...
原创
2022-10-20 15:50:06
280阅读
BERT(来自Transformer的双向自编码器)预训练模型,旨在通过联合左侧和右侧的上下文,从未标记文本中预训练出一个深度双向表示模型。
原创
2024-01-22 10:30:58
374阅读