大数据技术 —— MapReduce 简介 本文为senlie原创,转载请保留此地址:http://www.cnblogs.com/senlie/ 1.概要很多计算在概念上很直观,但由于输入数据很大,为了能在合理的时间内完成,这些计算必须分布在数以百计数以千计的机器上。例如处理爬取得到的文档、网页请
转载 2018-08-16 11:37:00
197阅读
2评论
1.Hive简述  1.1 Hive是什么    Hive是数据仓库.它是构建在Hadoop之上的,通过解析QL(Hive SQL),转换成MR任务(Tez,Spark......)去提交执行.    RDBMS一般是写验证,而Hive是读验证,即数据进入不会验证数据是否符合要求,只在读取的时候检查,解析具体字段  1.2 Hive的优缺点    优点:      可以直接访问HDFS,或者其它的
转载 2023-11-13 12:42:49
119阅读
首先Spark是借鉴了mapreduce并在其基础上发展起来的,继承了其分布式计算的优点并改进了mapreduce明显的缺陷,但是二者也有不少的差异具体如下:MR是基于进程,spark是基于线程Spark的多个task跑在同一个进程上,这个进程会伴随spark应用程序的整个生命周期,即使没有作业进行,进程也是存在的MR的每一个task都是一个进程,当task完成时,进程也会结束所以,spark比M
转载 2023-08-11 23:35:57
243阅读
MR数据流向示意图步骤 1输入文件从HDFS流向Mapper节点。在一般情况下,map所需要的数据就存在本节点,这就是数据本地化计算的优势,但是往往集群中数据分布不均衡(1000台节点,数据冗余度是10,每个文件并不能均匀分布在每个节点上),而MR的计算槽位是均匀分布在节点上的(配置文件中指定的map和reduce数量),所以势必有些计算节点需要通过数据传输从别的节点获取计算数据。步骤 2Mapp
转载 2023-12-19 19:51:26
96阅读
一,调优基础 :1 ,连接暗示 :需求 : 让 join 发生在 map 端sql :select /*+ mapjoin(customers) */ a.*,b.* from customers a left outer join orders b on a.id=b.cid;2 ,hive 执行计划hql 在执行的时候,是转化成了什么样的 mr 去执行的。3 ,查看执行计划 : expla
转载 2023-09-05 15:24:40
111阅读
Pig是一种编程语言,它简化了Hadoop常见的工作任务。Pig可加载数据、表达转换数据以及存储最终结果。Pig内置的操作使得半结构化数据变得有意义(如日志文件)。同时Pig可扩展使用Java中添加的自定义数据类型并支持数据转换。 Hive在Hadoop中扮演数据仓库的角色。Hive添加数据的结构在HDFS(hive superimposes structure on data in HDFS)
转载 2023-09-12 03:47:08
113阅读
-- hive的库、表等数据操作实际是hdfs系统中的目录和文件,让开发者可以通过sql语句, 像操作关系数据库一样操作文件内容。一、hiveSQL转化为MR过程        一直好奇hiveSQL转化为MR过程,好奇hive是如何做到这些的,所以在网上找了几篇相关博客,根据自己理解重新画了一份执行过程图,做笔记。   二、h
转载 2023-07-12 09:30:10
165阅读
三个案例wordcount案例需求分析设计代码温度统计案例需求分析设计代码涉及到的类NullWritableWritableComparable\接口WritableComparator类推荐好友案例需求分析设计代码 wordcount案例需求统计输入的文件中,每个单词出现了几次分析设计在map中将输入的每条数据切割成单词,将key为单词,value为1的计算结果输出默认的分组器会将相同key(
转载 2023-11-07 01:32:59
59阅读
Fetch抓取 hive中的某些查询不必使用MR,例如select * from,在这种情况下,hive可以简单的读取表的存储目录下的文件,然后输出查询结果到控制台。 hive.fetch.task.conversion设置成mre,如下查询方式都不会执行MR程序 hive (default)> set hive.fetch.task.conversion=more; hive (defau
转载 2024-05-30 13:39:12
95阅读
一、物料准备: 1 显卡1060及以上的PC主机 2 HTC VIVE头盔一套(头盔直插显卡上的HDMI接口) 3 1080P摄像头一个(插USB3.0) 4 绿幕一套,能覆盖整个摄像头的可拍摄范围即可(绿色的布就行) 二、软件准备 1 steam上购买的正版BeatSaber 2 steam上下载
原创 2021-09-01 10:54:38
888阅读
一、Hololens概述Hololens有以下特性1、空间映射借助微软特殊定制的全息处理单元(HPU),HoloLens 实现了对周边环境的快速扫描和空间匹配。这保证了 HoloLens能够准确地在真实世界表面放置或展现全息图形内容,确保了核心的AR体验。2、场景匹配HoloLens 设备能存储并识别环境信息,恢复和保持不同场景中的全息图像对象。当你离开当前房间再回来时,会发现原有放置的全息图像均
转载 2017-05-03 15:22:33
851阅读
1 MR的原理MapeReduce(简称MR)的是大数据计算引擎,相对于Linux awk等工具而已,最大的优势是可以分布式执行,充分利用计算机的多核性能。 一个MR作业(job)是客户端需要执行的一个工作单元,包括输入数据、MR程序和配置信息。作业又可以分成若干个任务(task)来执行,包括map任务和reduce任务。原始数据被MR按照HDFS的快大小(默认128M)分片(split),每一个
转载 2024-01-08 18:12:35
169阅读
基于hive引擎的计算优化本篇文章主要介绍hive引擎的计算优化,可能也是一篇实打实的对大家实际工作带来帮助的文章,全文主要包含三个部分:hive底层、hive参数调优、常见问题解决一、hive底层 - MapReduce1.MR进程一般一个完成的MR程序在运行时有三个进程,分别如下: (1)MR Appmaster:负责整个调度和过程协调 (2)MapTask:负责Map阶段的整个数据处理流程
转载 2023-11-24 21:07:57
498阅读
一、过程 1、进行排序(自定义Hadoop序列化) 2、进行分组 二、语法 1、自定义分组,继承WritableComparator 2、创建无参构造参数 目的:将比较对象的类传给父类 super(GroupBean.class, true); 注意: a、GroupBean.class是Hadoo
mr
原创 2021-07-14 13:50:14
250阅读
# Hive MapReduce 在大数据领域中,Hive是一个非常强大的数据仓库基础设施,它能够提供类似于SQL的查询语言来处理海量数据。而Hive MapReduce(简称Hive MR)是Hive的核心组件之一,它使用了MapReduce框架来实现Hive的查询功能。 ## 什么是MapReduce? MapReduce是一种用于处理和生成大规模数据集的一种编程模型和算法。它分为两个阶
原创 2023-12-05 16:26:13
34阅读
3. 后期工作(组长)3.1 后期组长的工作分为三部分3.1.1 审查合并3.1.2 发布项目和版本变更3.1.3 Gitlab加标签(项目上线以后) 3.1 审查合并3.1.1 组员发起合并请求后,组长登录gitlab,点击合并请求3.1.2 组长注意千万不要轻一点接受合并请求3.1.3 提交评论3.1.4 如果组员将问题全部修改好,且已经决定要发布了,我们就可以接受合并请求。 3.
在大数据相关的面试中,经常会遇到了一个经典的问题:请说说Spark与Hadoop MR的异同?虽然你有可能过关了,但是由于现场发挥的原因,看了这篇文章你还可以答得更好,就在这里总结一下这个问题。首先Spark是借鉴了mapreduce并在其基础上发展起来的,继承了其分布式计算的优点并改进了mapreduce明显的缺陷,但是二者也有不少的差异具体如下:1、spark把运算的中间数据存放在内存,迭代计
转载 2024-01-12 14:56:24
61阅读
一、MapReduce简介之前我们我们讲解了Hadoop的分布式文件储存系统HDFS,曾把它比作一个工厂的仓库。而今天我们要介绍的MapReduce(简称MR)分布式计算框架,就可以把他看作一个工厂的流水线。1、MR的编程思想MR的核心的思想就是分而治之,通俗的来说,就是将复杂的事情分割成很多小的事情,一一去完成,最终合并结果。那么我们可以明白MR的过程实际就是输入,分,处理,合并,输出。MR的过
转载 2024-01-02 10:22:43
148阅读
# 理解Hadoop MapReduce与Spark MapReduce的区别 在大数据处理领域,Hadoop MapReduce和Spark都是广泛使用的技术。尽管它们在功能上有很多重叠,但在运行过程、性能和编程模型等方面有着显著的区别。本文将帮助新手了解这两者在MapReduce过程中的不同之处。 ## MapReduce流程概述 首先,我们先简要介绍Hadoop MapReduce和S
原创 8月前
97阅读
Hive on MR是基于MapReduce的Hive实现,可以用于大数据处理。然而,随着数据技术的不断演进,Hive的实现逐渐转向Spark等计算引擎。因此,了解“Hive on MR”的迁移以及兼容性处理变得至关重要。下面将详细介绍“Hive on MR”相关问题的解决方案。 ## 版本对比与兼容性分析 Hive on MR和其他实现版本(如Hive on Spark)的对比可以通过如下四
原创 5月前
63阅读
  • 1
  • 2
  • 3
  • 4
  • 5