论文:MobileFaceNets: Efficient CNNs for Accurate RealTime Face Verification on Mobile Devices0 摘要作者简单分析了普通的移动式设备上部署的网络应用于人脸验证任务时的缺点,并克服这个缺点设计了高效、准确的人脸验证模型MobileFaceNets。在相同的实验条件下,MobileFaceNets和MobileNe
 MobileFaceNets: Efficient CNNs for Accurate Real- Time Face Verification on Mobile Devices 该论文简要分析了一下普通的mobile网络用于人脸检测的缺点。这些缺点能够很好地被他们特别设计的MobileFaceNets克服,该网络是一种为了能够在手机和嵌入式设备中实现高准确度的实时人脸检测而进行剪切
转载 2024-07-19 14:33:46
209阅读
原文:MobileFaceNets: Efficient CNNs for Accurate Real-time Face Verification on Mobile DevicesMobileFaceNet1、四个问题要解决什么问题? 设计一个在手机或嵌入式设备上可实时运行且具有高精度的人脸验证CNN模型。用了什么方法解决? 以MobileNet v2网络为骨架,做了一些改进:
整理的人脸系列学习经验:包括人脸检测、人脸关键点检测、人脸优选、人脸对齐、人脸特征提取等过程总结,有需要的可以参考,仅供学习,请勿盗用。MobileFaceNets解读论文地址:https://arxiv.org/ftp/arxiv/papers/1804/1804.07573.pdfgithub mobilefacenet-caffe:https://github.com/KaleidoZhou
前言本章介绍如何使用PaddlePaddle实现简单的声纹识别模型,本项目参考了人脸识别项目的做法PaddlePaddle-MobileFaceNets ,使用了ArcFace Loss,ArcFace loss:Additive Angular Margin Loss(加性角度间隔损失函数),对特征向量和权重归一化,对θ加上角度间隔m,角度间隔比余弦间隔在对角度的影响更加直接。项目源码地址:Vo
 此版本为新版本,如想使用使用旧版本,请转到V1.0版本 ,本项目使用了EcapaTdnn模型实现的声纹识别,不排除以后会支持更多模型,同时本项目也支持了多种数据预处理方法,损失函数参考了人脸识别项目的做法PaddlePaddle-MobileFaceNets ,使用了ArcFace Loss,ArcFace loss:Additive Angular Margin
前言本项目使用了EcapaTdnn模型实现的声纹识别,不排除以后会支持更多模型,同时本项目也支持了多种数据预处理方法,损失函数参考了人脸识别项目的做法PaddlePaddle-MobileFaceNets ,使用了ArcFace Loss,ArcFace loss:Additive Angular Margin Loss(加性角度间隔损失函数),对特征向量和权重归一化,对θ加上角度间隔m,角度间隔
前言本项目使用了EcapaTdnn模型实现的声纹识别,不排除以后会支持更多模型,同时本项目也支持了多种数据预处理方法,损失函数参考了人脸识别项目的做法PaddlePaddle-MobileFaceNets ,使用了ArcFace Loss,ArcFace loss:Additive Angular Margin Loss(加性角度间隔损失函数),对特征向量和权重归一化,对θ加上角度间隔m,角度间隔