CHAPTER 2 .Summarization Patterns 随着每天都有更多的数据加载进系统,数据量变得很庞大。这一章专注于对你的数据顶层的,概括性意见的设计模式,从而使你能扩展思路,但可能对局部数据是不适用的。概括性的分析都是关于对相似数据的分组和执行统计运算,创建索引,或仅仅为了计数。 ,你可能想按某种规则计算出所存的钱的总数,或者按人口计算人们在互联网花费的平均时长
紧接上一篇,为了把MapReduce的示例搞明白,需要先把Hadoop上的java编译调试环境给整出来,毕竟,一些执行流程的具体细节被封装在了框架中,仅仅靠公开的源代码静态的解读还是太费事了。有了调试器就要方便得多,理解起来也会省事不少。 一、构建基
什么是MapReduce?MapReduce是一种编程模型,其理论来自Google公司发表的三篇论文(MapReduce,BigTable,GFS)之一,主要应用于海量数据的并行计算。MapReduce可以分成Map和Reduce两部分理解。1.Map:映射过程,把一组数据按照某种Map函数映射成新的数据。2.Reduce:归约过程,把若干组映射结果进行汇总并输出。让我们来看一个实际应用的栗子,如
转载
2024-02-26 07:11:12
43阅读
一、为什么是MapReduce?世间的计算无非就两种形式——Map & Reduce,而Reduce 又依赖 Map实现Map: 以一条记录为单位做映射,只关心一条记录中的某个字段。它是一种映射,将数据映射为kv的形式,相同的key为一组。一条记录可以转化为另一条或另N条记录。Reduce: 以一组数据为单位做计算。在Reduce方法内按要求迭代计算这一组数据。MapReduc
转载
2024-05-06 10:13:31
45阅读
操作:MapReduce框架将文件分为多个splits,并为每个splits创建一个Mapper,所以Mappers的个数直接由splits的数目决定。而Reducers的数目可以通过job.setNumReduceTasks()函数设置1、Map任务的个数:理论值:1、Mapper数据过大的话,会产生大量的小文件,过多的Mapper创建和初始化都会消耗大量的硬件资源Mapper数太小,并发度过小
转载
2023-07-12 13:36:01
794阅读
参考hadoop权威指南 第六章,6.4节背景hadoop,mapreduce就如MVC,spring一样现在已经是烂大街了,虽然用过,但是说看过源码么,没有,调过参数么?调过,调到刚好能跑起来。现在有时间看看hadoop权威指南,感觉真是走了许多弯路。MR流程参数共同影响io.sort.factor多路合并允许的最大输入路数。设成较大的值可以减少合并轮数,从而减少磁盘读写次数。map端io.so
转载
2024-04-19 10:43:39
37阅读
一:WritableComparable排序排序是MapReduce框架中最重要的操作之一。MapTask和ReduceTask均会对数据按照key进行排序。该操作属于Hadoop的默认行为。任何应用程序中的数据均会被排序,而不管逻辑上是否需要。默认排序是按照字典顺序排序,且实现该排序的方法是快速排序。对于MapTask,它会将处理的结果暂时放到环形缓冲区中,当环形缓冲区使用率达到一定阈值后,再对
转载
2024-03-21 08:53:53
56阅读
JobConf.setNumMapTasks(n)是有意义的,结合block size会具体影响到map任务的个数,详见FileInputFormat.getSplits源码。假设没有设置mapred.min.split.size,缺省为1的情况下,针对每个文件会按照min (totalsize[所有文件总大小]/mapnum[jobconf设置的mapnum], blocksize)为大小来拆分
转载
2024-01-25 21:14:26
106阅读
MapReduce 之Map 端 join一 前言引入数据倾斜{数据倾斜在MapReduce编程模型中十分常见,用最通俗易懂的话来说,数据倾斜无非就是大量的相同key被partition分配到一个分区里,造成了'一个人累死,其他人闲死'的情况,这种情况是我们不能接受的,这也违背了并行计算的初衷,首先一个节点要承受着巨大的压力,而其他节点计算完毕后要一直等待这个忙碌的节点,也拖累了整体的计算时间,可
hadoop MapReduce2 多Job串行处理示例代码
转载
2015-05-30 15:34:00
115阅读
2评论
Hadoop MapReduce2 几个常用的功能代码示例
转载
2015-05-30 13:19:00
86阅读
2评论
前言:
MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Reduce(归约)",和它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。它极大地方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统上。 当前的软件实现是指定一个Map(映射)函数,用来把一组键值对映射成一组新的键值对,指定并发的Red
转载
2024-05-20 22:47:13
41阅读
目录MapReduce框架原理一、InputFormat数据输入1. 切片与MapTask并行度决定机制2. FielInputFormat切片机制3. FileInputFormat切片大小的参数设置4. TextInputFormat1).FileInputFormat实现类2).TextInputFormat5. CombineTextInputFormat切片机制1). 应用场景2).
转载
2024-04-11 12:53:10
30阅读
从MapReduce自身的命名特点可以看出,MapReduce由两个阶段组成:Map和Reduce。用户只需编写map()和reduce()两个函数,即可完成简单的分布式程序的设计。map()函数以key/value对作为输入,产生另外一系列key/value对作为中间输出写入本地磁盘。MapReduce框架会自动将这些中间数据按照key值进行聚集,且key值相同(用户可设定聚集策略,默认情况下是
1)map的个数是由输入所分成的split的个数决定的,有多少个split,就会有多少个map任务。2)split由两个因素决定:一个是文件数量,一个是文件大小。 一般情况下,Hadoop为每一个文件或文件的一部分分配一个map任务。如果文件小于要split的size,该文件就对应一个map;如果文件大于要split的size,该文件就会对应多个map。所以,一般来说,文件数量越多,map越多;
转载
2024-04-15 11:30:39
257阅读
最近在整理hadoop的部分内容时,发现有个问题需要注意:从“我如何完成这个任务”已经发展到了“怎么能让程序运行的更快”。其实MapReduce计算模型的优化涉及到了方方面面的内容,但是主要集中在两个方面:一是计算性能方面的优化,二是I/O操作方面的优化。但其实,这两种之中还包含留个方面的内容。 1、任务调度 &n
转载
2024-08-18 12:47:06
81阅读
一、果断先上结论
1.如果想增加map个数,则设置mapred.map.tasks 为一个较大的值。
2.如果想减小map个数,则设置mapred.min.split.size 为一个较大的值。
3.如果输入中有很多小文件,依然想减少map个数,则需要将小文件merger为大文件,然后使用准则2。
二、原理与分析过程
看了很多博客,感觉没
转载
2024-01-21 07:35:29
23阅读
一、MapReduce的核心功能
MapReduce是一个分布式运算程序的编程框架,是用户开发“基于Hadoop的数据分析应用”的核心框架。
MapReduce的核心功能是将用户编写的业务逻辑代码和自带默认组件整合成一个完整的分布式运算程序,并发运行在一个Hadoop集群上。二、MapReduce的优点易于编程它简单的实现一些接口,就可以完成一个分布式程序,这个分布式程序可以分布到大量廉价的PC机
1 概述MapReduce是一个高度抽象的大数据作业执行组件,整个作业过程主要有两个,分别是map与reduce,本文主要介绍MapReduce中的map与reduce任务数设置的方式,以及如何合理的设置map与reduce的任务数。
2 从源码入手分析(1)分析JobSubmitter 任务提交类JobStatus submitJo
转载
2024-04-02 06:42:10
27阅读
学习mapreduce过程中, map第一个阶段是从hdfs 中获取文件的并进行切片,我自己在好奇map的启动的数量和文件的大小有什么关系,进过学习得知map的数量和文件切片的数量有关系,那文件的大小和切片的数量的有什么关系 ,下面我就进入Hadoop的源代码进行研究一下 文件的大小和切片的数量有什么关系。 文件获取和切片和一个Inp
转载
2024-08-02 11:45:07
30阅读