监督学习(五):LightGBM算法  提升树是利用加法模型和前向分布算法实现学习的优化过程,它有一些高效的实现,如GBDT,XGBoost和pGBRT,其中GBDT是通过损失函数的负梯度拟合残差,XGBoost则是利用损失函数的二阶导展开式拟合残差。但是,当面对大量数据集和高维特征时,其扩展性和效率很难令人满意,最主要的原因是对于每一个特征,它们需要扫描所有的样本数据来获得最优切分点,这个过程是
向AI转型的程序员都关注了这个号????????????机器学习AI算法工程 公众号:datayx目录1 LightGBM原理1 LightGBM原理1.2 LightGBM 的动机...
转载 2021-10-26 16:07:15
1401阅读
向AI转型的程序员都关注了这个号????????????机器学习AI算法工程 :datayx目录1 LightGBM原理1 LightGBM原理1.2 LightGBM 的动机...
转载 2022-04-25 21:58:02
200阅读
1、LightGBM简介  LightGBM是一个梯度Boosting框架,使用基于决策树的学习算法。它可以说是分布式的,高效的,有以下优势:  1)更快的训练效率  2)低内存使用  3)更高的准确率  4)支持并行化学习  5)可以处理大规模数据  与常见的机器学习算法对比,速度是非常快的  2、XGboost的缺点  在讨论LightGBM时,不可避免的会提到XGboost,关于XGboos
转载 2024-09-02 12:17:12
41阅读
 引言矢量量化是19世纪70年代后期发展起来的一种数据压缩技术,其基本思想是将若干个标量数据组构成一个矢量,然后在矢量空间给以整体量化,从而压缩了数据而不损失多少信息。矢量量化编码也是在图像、语音信号编码技术中研究得较多的新型量化编码方法,它的出现并不仅仅是作为量化器设计而提出的,更多的是将它作为压缩编码方法来研究的。在传统的预测和变换编码中,首先将信号经某种映射变换变成一个数的序列,然
逻辑回归算法原理推导Logistic Regression和Linear Regression的原理是相似,但是做的事情不同,Linear Regression解决的是一个具体确定值的问题,Logistic Regression解决的是分类的问题,而且是最经典的二分法,简单高效通俗易懂,原理非常简单。算法并不是越复杂越。分类问题的base model一般选择逻辑回归,其他算法和逻辑回归算法比较,差
   利用最小二乘法,计算出一元线性回归方程,可以直接调用函数。但是自主实现更能理解其中的数学逻辑以及有效提高编程能力。这里采用的是t检验,数据来源于1990-2012年国内生产总值与成品刚才需求量的统计数据。代码主体用python来实现的,图片是用matlab实现的(个人感觉matlab做出来的图片呈现出来的效果更好一些)。import numpy as np from s
机器学习算法day04_Logistic回归分类算法及应用课程大纲Logistic回归分类算法原理Logistic回归分类算法概述Logistic回归分类算法思想Logistic回归分类算法分析算法要点Logistic回归分类算法案例案例需求Python实现Sigmoid函数返回回归系数线性拟合线Logistic回归分类算法补充线性逻辑回归的数学原理    
转载 10月前
37阅读
CNN(卷积神经网络)示意图:网络架构 一个卷积神经网络由若干卷积层、Pooling层、全连接层组成。常用架构模式为: INPUT -> [[CONV]*N -> POOL?]*M -> [FC]*KCONV层输出值的计算步长为1时的公式 其中,动态计算过程Pooling层输出值的计算 Pooling层主要的作用是下采样,通过去掉Feature Map中不重要的样本,进一步减少参
转载 2024-05-08 23:21:07
83阅读
@author:wepon本文介绍多层感知机算法,特别是详细解读其代码实现,基于Python theano,代码来自:Convolutional Neural Networks (LeNet)。经详细注释的代码和原始代码:放在我的github地址上,可下载。一、CNN卷积神经网络原理简介要讲明白卷积神经网络,估计得长篇大论,网上有很多博文已经写得很好了,所以本文就不重复了,如果你了解CN
转载 2024-05-09 12:47:18
43阅读
行人检测 概述:RCNN系列,YOLO系列和SSD系列。其中RCNN系列算法是现在使用的最广泛的基于深度学习的行人检测算法。        在说行人检测之前不得不说一下目标检测。行人检测是目标检测下的一个分支,其检测的标签是行人。我理解的目标检测是准确地找到给定图片中对象的位置,并标出对象的类别。目标检测所要解决的问题是目标在哪里以及其状态的问题。但是,这个
01 目录环境需求怎样使用本地化扩展卡尔曼滤波本地化无损卡尔曼滤波本地化粒子滤波本地化直方图滤波本地化映射高斯网格映射光线投射网格映射k均值物体聚类圆形拟合物体形状识别SLAM迭代最近点匹配EKF SLAMFastSLAM 1.0FastSLAM 2.0基于图的SLAM路径规划动态窗口方式基于网格的搜索迪杰斯特拉算法A*算法势场算法模型预测路径生成路径优化示例查找表生成示例状态晶格规划均匀极性采样
1.前言(1)神经网络的缺陷在神经网络一文中简单介绍了其原理,可以发现不同层之间是全连接的,当神经网络的深度、节点数变大,会导致过拟合、参数过多等问题。(2)计算机视觉(图像)背景通过抽取只依赖图像里小的子区域的局部特征,然后利用这些特征的信息就可以融合到后续处理阶段中,从而检测更高级的特征,最后产生图像整体的信息。距离较近的像素的相关性要远大于距离较远像素的相关性。对于图像的一个区域有用的局部
转载 2024-05-22 19:57:48
80阅读
这次讲一讲如何在keras中简单实现CNN对手写数字的识别. 首先在上一课的讲述中,图像现在是分RGB三个通过,以立方体的形式来检测和卷积的,一般一维的叫做向量vector,那么三维这个立方体矩阵就叫做tensor张量。 model2.add( Convolution2D(25,3,3,      
 机器学习算法完整版见fenghaootong-github卷积神经网络原理(CNN)卷积神经网络CNN的结构一般包含这几个层:输入层:用于数据的输入卷积层:使用卷积核进行特征提取和特征映射激励层:由于卷积也是一种线性运算,因此需要增加非线性映射池化层:进行下采样,对特征图稀疏处理,减少数据运算量。全连接层:通常在CNN的尾部进行重新拟合,减少特征信息的损失CNN的三个特点:局部连接:这
转载 2023-10-12 11:42:38
98阅读
(一)目标检测概述 (二)目标检测算法之R-CNN (三)目标检测算法之SPPNet (四)目标检测算法之Fast R-CNN 写在最前面:https://zhuanlan.zhihu.com/p/31426458,这是某知乎大佬关于我今天所写的超级棒的文章,放在最前面,完全可以不看我的文章去看这位大佬的。当然,大佬的文章深度和精度都很足,因此文章篇幅比较长
文章目录为什么使用CNN彩色图片-CNNMax PollingFlatten 是全连接神经网络的简化版,一般用于图像识别 为什么使用CNN图像只需要识别一部分同样的参数出现在不同的区域对图像放缩以上情况都可以使用CNN,减少神经网络的参数。CNN的大致过程如图所示。 先了解一下Convolution的做法: 假设一个矩阵(图像信息可以写成矩阵的形式),有两个Filter(过滤器,卷积核)也是矩
转载 2024-03-15 13:50:37
60阅读
 卷积神经网络卷积神经网络(Convolutional Neural Network)简称CNNCNN是所有深度学习课程、书籍必教的模型,CNN在影像识别方面的为例特别强大,许多影像识别的模型也都是以CNN的架构为基础去做延伸。另外值得一提的是CNN模型也是少数参考人的大脑视觉组织来建立的深度学习模型,学会CNN之后,对于学习其他深度学习的模型也很有帮助,本文主要讲述了CNN的原理以及
传统对象识别-模式识别传统的模式识别神经网络(NN)算法基于梯度下降,基于输入的大量样本特征数据学习有能力识别与分类不同的目标样本。这些传统模式识别方法包括KNN、SVM、NN等方法、他们有一个无法避免的问题,就是必须手工设计算法实现从输入图像到提取特征,而在特征提取过程中要考虑各种不变性问题、最常见的需要考虑旋转不变性、光照不变性、尺度不变性、通过计算图像梯度与角度来实现旋转不变性、通过归一化来
主流的深度学习模型有哪些?谷歌人工智能写作项目:小发猫常见的深度学习算法主要有哪些?深度学习常见的3种算法有:卷积神经网络、循环神经网络、生成对抗网络神经网络软件有哪些。卷积神经网络(ConvolutionalNeuralNetworks,CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(FeedforwardNeuralNetworks),是深度学习的代表算法之一。循环神经网络(Recur
  • 1
  • 2
  • 3
  • 4
  • 5