转载 2019-08-20 09:35:00
594阅读
1. KNN算法K近邻(k-Nearest Neighbor,KNN)分类算法的核心思想是如果一个样该样本,作为预测值。KNeighborsClassi
原创 2022-09-10 01:15:46
655阅读
分类算法# knn算法 from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier() ''' __init__函数 def __init__(self, n_neighbors=5, weights='uniform', algorithm='auto', l
转载 2024-10-17 17:46:04
11阅读
K近邻算法简单代码 1.代码基本画图代码from sklearn.neighbors import KNeighborsClassifier x = [[0], [1], [2], [3]] y = [0, 0, 1, 1] # 实例化API estimator = KNeighborsClassifier(n_neighbors=2) # 使用fi
转载 2024-10-16 12:54:58
26阅读
最近邻分类概念讲解我们使用的是scikit-learn 库中的neighbors.KNeighborsClassifier 来实行KNN.from sklearn import neighbors neighbors.KNeighborsClassifier(n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30,p=2,
转载 2024-03-18 12:07:17
55阅读
本文主要对KNN的分类算法进行验证,以及如何编写KNN,以及KNN的应用。 KNN主要运用于数据分类,本文通过某电站的仿真数据进行验证分析。 官方KNN的调用:from sklearn.neighbors import KNeighborsClassifier # 3表示最近的3个点作为分类标准 knn = KNeighborsClassifier(3) # x表示训练数据, y表示训练数据标签
文章目录1.Skelarn KNN参数概述2.代码实践3.KNN和Kmeans1.Skelarn KNN参数概述def KNeighborsClassifier
原创 2022-05-26 01:01:35
531阅读
KNN算法knn = KNeighborsClassifier ( )朴素贝叶斯gnb = GaussianNB ( )决策树dtc = DecisionTreeClassifier ( )SVM算法svm = SVC ()代码:import numpy as npimport matplotlib.pyplot as pltfrom itertools import productfrom sk
原创 精选 2022-08-05 10:50:54
744阅读
1点赞
 import pickle import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.
原创 2023-05-30 21:51:18
72阅读
from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score, classificat
原创 2024-08-15 09:13:27
23阅读
---恢复内容开始---import numpy as np import tensorflow as tf import struct import cv2 import input_data import matplotlib.pyplot as plt from sklearn.neighbors import KNeighborsClassifier import numpy as np
转载 2023-06-14 00:44:40
75阅读
一.SkelarnKNN参数概述要使用sklearnKNN算法进行分类,我们需要先了解sklearnKNN算法的一些基本参数。def KNeighborsClassifier(n_neighbors = 5, weights='uniform', algorithm = '',
fromsklearnimportneighborsfromsklearnimportdatasetsknn=neighbors.KNeighborsClassifier()iris=datasets.load_iris()#数据的初始计算值和结果值knn.fit(iris.data,iris.target)predictedLabel=knn.predict([[0.1,0.2,0.3,0.4]
转载 2018-09-11 09:01:12
349阅读
  1 import pandas as pd 2 import numpy as np 3 import matplotlib.pyplot as plt 4 import os 5 from sklearn.neighbors import KNeighborsClassifier # knn分类 6 7 8 def build_data(
使用knn创建一个分类器# 数据集不是特别大的情况, 用KNeighborsClassifier 分类器from sklearn.neighbors import KNeighborsClassifierfrom sklearn.preprocessing import StandardScalerfrom sklearn import datasets​# 加载数据iris = d...
原创 2022-07-18 14:52:16
26阅读
鸢尾花 iris展示import numpy as np import matplotlib.pylab as pyb %matplotlib inline from sklearn.neighbors import KNeighborsClassifier from sklearn import datasets加载数据,数据降维(画图)X,y = datasets.load_iris(True
1 再识K-近邻算法API sklearn.neighbors.KNeighborsClassifier(n_neighbors=5,algorithm='auto') n_neighbors: int,可选(默认= 5),k_neighbors查询默认使用的邻居数 algorithm:{‘auto ...
转载 2021-11-03 09:53:00
115阅读
2评论
#knn 鸢尾花实现,决策边界,k值,回归 import numpy as np import matplotlib.pyplot as plt # KNN分类器 from sklearn.neighbors import KNeighborsClassifier #数据集 from sklearn import datasets #数据集划分 from sklearn.model_selecti
目录scikit-learn库之k近邻算法一、KNeighborsClassifier1.1 使用场景1.2 代码1.3 参数详解1.4 方法1.4.1 kneighbors([X, n_neighbors, return_distance])1.4.2 kneighbors_graph([X, n
转载 2019-11-06 17:23:00
172阅读
2评论
手写数字识别导包import numpy as np import matplotlib.pyplot as plt %matplotlib inline #导入knn算法,决策树,逻辑斯蒂回归 from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier fr
转载 2023-10-13 23:17:59
57阅读
  • 1
  • 2
  • 3
  • 4