先说KM算法求二分图的最佳匹配思想,再详讲KM的实现。【KM算法求二分图的最佳匹配思想】对于具有二部划分( V1, V2 )的加权完全二分图,其中 V1= { x1, x2, x3, ... , xn }, V2= { y1, y2, y3, ... , yn },边< xi, yj >具有权值 Wi,j 。该带权二分图中一个总权值最大的完美匹配,称之为最佳匹配。 记 L(x
转载
2024-10-18 20:46:22
58阅读
一、简介 K均值聚类算法是先随机选取K个对象作为初始的聚类中心。然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心。聚类中心以及分配给它们的对象就代表一个聚类。每分配一个样本,聚类的聚类中心会根据聚类中现有的对象被重新计算。这个过程将不断重复直到满足某个终止条件。终止条件可以是没有(或最小数目)对象被重新分配给不同
转载
2024-09-28 20:11:45
79阅读
聚类分析介绍关键词:没有先验知识、亲密程度、相似性个体、自动分类;K-Means聚类 K均值聚类是一种动态聚类法,为了改进之前的算法在样品个数很大时内存和时间都消耗极大的缺点;即一种动态聚类法,先粗略分一下类,然后按照某种最优原则进行修正,直到分类比较合理为止;思想: 先假定样本可分为C类,选定C个初始聚类中心,然后根据最小距离原则将每个样本分配到某一类中,之后不断迭代计算各类的聚类中心,并
转载
2024-01-03 08:38:42
72阅读
一、聚类算法1、kmeans定义:K-means算法,也被称为K-均值或K-平均算法,是一种广泛使用的聚类算法。K-means算法是基于相似性的无监督的算法,通过比较样本之间的相似性,将较为相似的样本划分到同一类别中。思想: 事先确定常数K,常数K意味着最终的聚类类别数,首先随机选定初始点为质心,并通过计算每一个样本与质心之间的相似度(这里为欧式距离),将样本点归到最相似的类中,接着,重新计算每个
转载
2024-03-04 11:10:11
109阅读
在字符串匹配算法中,KMP算法之所以差不多可以做到O(N)的复杂度,关键就在于消除了主指针回溯,从而可以节省大量的时间。
例如想要对abcdabce和abce进行匹配,那么暴力算法如下表所示,每次需要对比4个字符,总共对比5次。
转载
2022-04-09 17:14:54
241阅读
最近遇到一个字符串内查找指定子字符串出现位置的算法问题,最后虽然用暴力匹配法解决了问题,但是时间效率非常差。看到网上说可以用KMP模式匹配算法进行优化,搜了很多资料才基本弄懂,这里记录一下自己的理解和实现代码。本文并没有重复造轮子,是基于结尾处两篇大神的参考文章的一些自我理解。大神的文章深入浅出通俗易懂,建议先行食用。 文章目录实现效果暴力匹配的缺点KMP算法原理代码实现next数组部分字符串匹配
转载
2023-09-19 04:46:33
95阅读
转载
2019-11-09 09:52:00
126阅读
2评论
K-means:无监督算法,具有不确定性,因为刚开始输入的聚类点不同,可能会导致最终聚类的结果不同,因此建议多做几次聚类,看看那种分类靠谱点。
簇的位置:簇中心的坐标。K-means初始化的时候随机选择一个点作为中心点,然后每个步骤迭代找到一个新的中心,在这个新的中心附近的点都相似,并被划分到同一个组;簇的半径:簇内每个点到簇中心的距离的平方差;簇的规模
转载
2024-06-05 21:09:20
44阅读
对于制造业来说,生产管理是企业的核心,企业核心没有优化,没有升级,将会对企业效益产生重大影响,在面对工业4.0快速发展,ERP企业管理软件已成为企业快速发展必不可少的办公软件。ERP生产计划贯穿了生产价值创造的全过程:从概念到投产的设计过程、从订货到送货的信息流通处理过程、从原材料到产成品的物质转换过程以及全生命周期的支持和服务过程,涉及每一个部门,每一个人员。1、生产管理为什么需要E
上一篇博客讲了基于LSTM不同类型的时间预测,这篇文档使用pytorch 动手实现如何基于LSTM模型单变量时间预测。同样使用sns flight(数据网盘下载链接见文末) 作为数据源,这里将数据下载下来存放在本机中。首先读取存储在本机中的flights.csv数据:import torch
import torch.nn as nn
imp
转载
2023-10-07 13:28:35
117阅读
文章目录前言一、文件结构二、读取数据部分1.引入库2.读入数据三、模型构成1.引入库2.模型结构——G3.模型结构——E4.初始化模型与权重5.构建BargainNet6.训练模型:总结 前言BargainNet是bcmi的一个项目。具体项目介绍见GitHub链接。出于各种原因需要使用BargainNet,因为有些不习惯用命令行启动训练模型,所以将里面使用的默认模型、参数直接提取出来,简化成了简
转载
2024-01-02 12:52:58
67阅读
时序分析(8)GARCH(p,q)模型 上篇文章我们探讨了ARCH模型对时序数据的波动性进行建模和预测,本篇文章介绍GARCH模型。 首先我们介绍GARCH模型的基本概念:Generalized Autoregressive Conditionally Heteroskedastic Models - GARCH(p,q)简单来说,GARCH模型就是A
转载
2023-10-07 13:25:14
38阅读
Simulink生成FMU第一步:首先搭建一个模型(MATLAB的工作路径应于此模型路径一致,根据所需建立接口数量,路径不可包含中文或者数值开头路径)第二步:对模型进行设置(固定步长,求解器4)固定步长一定要设置,否则导入的fmu运行会报错:0.001第三步:导出FMU协同仿真文件(默认保存位置是MATLAB当前工作路径,路径不可包含中文或者数值开头路径)Simulink导入fmu模型文件第一步:
转载
2023-07-21 22:14:18
839阅读
在这篇博文中,我将带大家探讨如何使用 Python 实现 ARMA(自回归移动平均)模型。ARMA 模型在时间序列分析中被广泛应用,能够有效地捕捉数据的时序特征。接下来,我们将按照背景描述、技术原理、架构解析、源码分析、应用场景和案例分析的结构进行详细阐述。
## 背景描述
时间序列数据在金融、经济、气象等领域随处可见,ARMA 模型是一种重要的统计模型,旨在对这类数据的分析与预测。为了更直观
# DNN模型的Python实现
深度神经网络(DNN)是一种强大的机器学习技术,可以用于图像识别、自然语言处理等诸多领域。本文将深入探讨DNN的基本构成、实现方法以及示例代码,帮助读者更好地理解该技术。
## 深度神经网络简介
深度神经网络是由多层人工神经元构成的网络结构。与传统的神经网络相比,DNN包含多个隐含层,使其能够捕捉数据中的复杂关系。每一层通过激活函数处理输入并传递给下一层,从
# KELM模型的Python实现教程
KELM(Kernel Extreme Learning Machine)是一种集成了核技巧的极限学习机,适用于分类和回归问题。对于刚入行的小白来说,理解KELM模型并实现它可能会稍微复杂,但只要按部就班,就一定能够掌握。本文将指导你完成KELM模型的Python实现,以下是整个实现过程。
## 整体流程
为了帮助你理清思路,下面是整个KELM模型实现
# Python实现AR模型
## 简介
在时间序列分析中,自回归(AR)模型是一种常用的模型,用于预测未来的数值。AR模型假设未来的值与过去的值相关,可以通过利用历史数据来预测未来的趋势。本文将介绍如何使用Python实现AR模型。
## 流程概览
下面是实现AR模型的整体流程:
| 步骤 | 描述 |
| --- | ---- |
| 1 | 导入数据 |
| 2 | 数据预处理 |
|
原创
2023-11-21 15:53:54
584阅读
简介基于统计的方法是经典的时间序列预测模型,也是财务时间序列预测的主要方法。他们假设时间序列是由随机冲击的线性集合产生的。一种有代表性的方法是ARMA模型,它是AR和MA模型的组合。它被扩展到非平稳时间序列预测,称为自回归综合移动平均(ARIMA),它结合了差分技术来消除数据中趋势分量的影响,并且由于其巨大的灵活性而成为最受欢迎的线性模型之一。然而,这种方法最初仅限于线性单变量时间序列,并且不能很
转载
2024-09-29 21:34:57
182阅读
作者 | News编辑 | 安可出品 | 磐创AI团队出品【磐创AI 导读】:本篇文章讲解了PyTorch专栏的第四章中的微调基于torchvision 0.3的目标检测模型。查看专栏历史文章,请点击下方蓝色字体进入相应链接阅读。查看关于本专栏的介绍:PyTorch专栏开篇。想要更多电子杂志的机器学习,深度学习资源,大家欢迎点击上方蓝字关注我们的公众号:磐创AI。
转载
2024-10-16 19:07:30
76阅读
SVD是一种提取信息的强大工具,通过SVD实现我们能够用小的多的数据集来表示原始数据集,这样做实际就是去除噪声和冗余信息。隐性语义索引SVD最早应用就是信息检索,我们称利用SVD方法为隐性语义索引(LSI),在LSI中一个矩阵是由文档和词语组成,当应用SVD到矩阵上时,就会构建多个奇异值。这些奇异值代表了文档中概念或主题,这一特点可以更高效的文档搜索。推荐系统SVD的另外一个应用就是推荐系统,简单