1、初始化k个簇中心。 2、更新所有样本点簇归属:样本点到哪个簇中心点最近就属于哪个簇。 3、重新计算每个簇的中心点(直到簇中心点不再变化或达到更新最大次数)
转载
2019-06-16 12:33:00
779阅读
2评论
一、K-均值聚类(K-means) k-means算法是一种简单的迭代型聚类算法,采用距离作为相似性指标,从而发现给定数据集中的K个类,且每个类的中心是根据类中所有值的均值得到,每个类用聚类中心来描述。对于给定的一个包含n个d维数据点的数据集X以及要分得的类别K,选取欧式距离作为相似度指标,聚类目标
转载
2019-06-10 10:14:00
234阅读
2评论
K-Means
原创
2021-08-19 12:53:06
144阅读
一、K-means算法原理 k-means算法是一种简单的迭代型聚类算法,采用距离作为相似性指标,从而发现给定数据集中的K个类,且每个类的中心是根据类中所有值的均值得到,每个类用聚类中心来描述。对于给定的一个包含n个d维数据点的数据集X以及要分得的类别K,选取欧式距离作为相似度指标,聚类目标是使得各类的聚类平方和最小,即最小化: &nbs
转载
2023-06-13 21:07:32
118阅读
使用TensorFlow实现K-Means算法,并将其应用于分类手写的数字图像。 此示例使用的是MNIST数据库手写数字作为训练样本(http://yann.lecun.com/exdb/mnist/)。Note: This example requires TensorFlow v1.1.0 or over.Author: Aymeric DamienProject: https:...
翻译
2022-02-09 18:29:53
297阅读
使用TensorFlow实现K-Means算法,并将其应用于分类
手写的数字图像。 此示例使用的是MNIST数据库
手写数字作为训练样本(http://yann.lecun.com/exdb/mnist/)。
Note: This example requires TensorFlow v1.1.0 or over.
Author: Aymeric Damien
Project: https:...
翻译
2021-07-15 15:12:54
735阅读
K-Means是聚类算法中的一种,其中K表示类别数,Means表示均值。顾名思义K-Means是一种通过均值对数据点进行聚类的算法。K-Means算法通过预先设定的K值及每个类别的初始质心对相似的数据点进行划分。并通过划分后的均值迭代优化获得最优的聚类结果。K值及初始质心K值是聚类结果中类别的数量。
转载
2017-04-11 08:43:00
220阅读
2评论
介绍K-means算法是是最经典的聚类算法之一,它的优美简单、快速高效被广泛使用。它是很典
原创
2022-08-21 00:35:17
109阅读
问题:K-所有值聚类是无监督学习算法设数据集。当中,。如果这个数据能够分为类。把这个问题模型化:,当中代表第类的聚点(中心点、均值)。该模型能够用EM算法进行训练:初始化,。E步:固定。最小化,显然。当中。M步:固定。最小化,,。直至收敛。——————————————————————————————...
转载
2015-07-30 16:00:00
747阅读
2评论
1.K-Means算法 K-Means算法,也被称为K-平均或K-均值算法,是一种广泛使用的聚类算法。K-Means算法是聚焦于相似的无监督的算法,以距离作为数据对象间相似性度量的标准,即数据对象间的距离越小,则它们的相似性越高,则它们越有可能在同一个类簇。之所以被称为K-Means是因为它可以发现k个不同的簇,且每个簇的中心采用簇中所含值的均值计算而成。2.聚类的概念 聚
转载
2023-06-13 21:41:24
110阅读
二分K-Means(Bisecting K-Means)是一种改进的聚类算法,它是K-Means算法的一种变体。与传统的K-Means算法一次性生成K个聚类不同,二分K-Means通过递归地将一个聚类分裂成两个,直到达到所需的聚类数目。
原创
2024-07-09 10:46:48
207阅读
k-means是一种迭代求解的聚类算法,是将数据分为K组,k由人为指定,随机选取一个中心点为初始的聚类中心,然后重复计算数据到之前 n 个聚类中心最远的距离,把每个对象分配给距离它最近的聚类中心。聚类中心以及分配给它们的对象就代表一个聚类。每分配一个样本,聚类的聚类中心会根据聚类中现有的对象被重新计算。这个过程将不断重复直到满足某个终止条件。终止条件可
推荐
原创
2021-10-28 14:11:40
2645阅读
点赞
1评论
示了K-means算法的工作流程和优化效果。更多计算机相关内容可访问作者博客网站rn.berlinlian.cn。
K-means是比较一种流行的聚类算法,它以非监督的方式将数据分为k个聚类。具体步骤如下,随机地选择k个数据点作为初始分类的中心(+标记)计算所有数据点与k个分类中心的“距离”(e.g.欧式距离),将它们标记为最近的那个分类,如上图对每种分类数据群,重新计算他们的中心(mean point),这个中心的计算和距离一样有很多定义方法重复2-3的操作,直到分类不再改变(或是不再有大的改变)K-mean
转载
2021-03-18 16:53:27
399阅读
2评论
K-means算法输入input:data X输出output:data(X,S)解释:输入没有标签的数据data X,经过训练,给每一个数据添上一个标签S{s1,s2,...,sk},对应的聚类中心为U...
转载
2015-07-16 19:23:00
259阅读
2评论
总结 1、二分法 2、总体中的最值 bisecting k-means :在初始时将所有数据当成一个聚簇,然后递归地将最不紧凑的聚簇用2-means拆分为2个聚簇,直至满意
转载
2019-01-14 23:33:00
117阅读
2评论
k-means是什么
原创
2022-06-18 23:55:37
418阅读
最近研究数据挖掘的相关知识,总是搞混一些算法之间的关联,俗话说好记性不如烂笔头,还是记下了以备不时之需。首先明确一点KNN与Kmeans的算法的区别:1.KNN算法是分类算法,分类算法肯定是需要有学习语料,然后通过学习语料的学习之后的模板来匹配我们的测试语料集,将测试语料集合进行按照预先学习的语料模板来分类2Kmeans算法是聚类算法,聚类算法与分类算法最大的区别是聚类算法没有学习语料集合。K-m
转载
2023-06-13 21:41:14
0阅读
聚类的基本思想俗话说"物以类聚,人以群分"聚类(Clustering)是一种无监督学习(unsupervised learning),简单地说就是把相似的对象归到同一簇中。簇内的对象越相似,聚类的效果越好。定义:给定一个有个对象的数据集,聚类将数据划分为个簇,而且这个划分满足两个条件:每个簇至少包含一个对象每个对象属于且仅属于一个簇。基本思想:对给定的,算法首先给出一个初始的划分方法,以后通过反复
原创
2021-03-04 14:58:28
698阅读
K-Means(K均值) 介绍 K-Means是被应用的最广泛的基于划分的聚类算法,是一种硬聚类算法,属于典型的局域原型的目标函数聚类的代表。算法首先随机选择k个对象,每个对象初始地代表一个簇的平均值或者中心。对于剩余的每个对象,根据其到各个簇中心的距离,把他们分给距离最小的簇中心,然后重新计算...
转载
2015-04-25 12:40:00
136阅读
点赞
2评论