文章目录相似性测度1.距离测度1.1 欧式距离1.2 街坊距离(Manhattan距离)1.3切式(Chebyshev)距离1.4明氏(Minkowski)距离1.5 马氏(Mahalanobis)距离1.6 Camberra距离2.相似测度2.1角度相似系数(夹角余弦)2.2指数相似系数3.间距离测度方法3.1最短距离法3.2 最长距离法3.3 中间距离法3.4 重心法3.5平均距离法
转载 2023-06-21 21:50:44
212阅读
**聚类分析与概率密度估计在数据分析中的应用** *本文以python为例,介绍了聚类分析和概率密度估计的基本概念和原理,并通过示例代码展示了如何使用python进行聚类分析和可视化展示概率密度。* ## 引言 数据分析是近年来广受关注的热门领域之一,其在各个行业中都有广泛的应用。其中,聚类分析和概率密度估计是数据分析的两个重要方面。聚类分析旨在将样本数据分成不同的组别,每个组别内的样本具有
原创 2024-02-08 03:52:54
78阅读
在工程应用中,用python手写代码来从头实现一个算法的可能性非常低,这样不仅耗时耗力,还不一定能够写出构架清晰,稳定性强的模型。更多情况下,是分析采集到的数据,根据数据特征选择适合的算法,在工具包中调用算法,调整算法的参数,获取需要的信息,从而实现算法效率和效果之间的平衡。而sklearn,正是这样一个可以帮助我们高效实现算法应用的工具包。Scikit learn 也简称 sklearn,
目录1.概论2.问题(1)问题的定义(2)的依据(距离的定义)3.基于原型的方法(k-均值)(1)k-均值的基本思想和基本步骤 (2)k-均值的特点4.基于密度的方法DBSCAN5.基于层次的方法(AGNES方法)6.python代码(1)k-均值(2)DBSCAN(3)AGNES1.概论之前几类数据挖掘的目的是挖掘出样本数据与标签之间的关系,
划分Kmeans原理(1)任意选择k个对象作为初始的簇中心;(2)根据距离(欧式距离)中心最近原则,将其他对象分配到相应中;(3) 更新簇的质心,即重新计算每个簇中对象的平均值;(4) 重新分配所有对象,直到质心不再发生变化  调包实现import time import pandas as pd from sklearn import preprocessing da
转载 2023-07-28 13:11:42
219阅读
菜鸟一枚,编程初学者,最近想使用Python3实现几个简单的机器学习分析方法,记录一下自己的学习过程。关于KMeans算法本身就不做介绍了,下面记录一下自己遇到的问题。一   、关于初始中心的选取 初始中心的选择一般有:(1)随机选取(2)随机选取样本中一个点作为中心点,在通过这个点选取距离其较大的点作为第二个中心点,以此类推。(3)使用层次等算法更新出初
尽管基于划分的算法能够实现把数据集划分成指定数量的簇,但是在某些情况下,需要把数据集划分成不同层上的簇:比如,作为一家公司的人力资源部经理,你可以把所有的雇员组织成较大的簇,如主管、经理和职员;然后你可以进一步划分为较小的簇,例如,职员簇可以进一步划分为子簇:高级职员,一般职员和实习人员。所有的这些簇形成了层次结构,可以很容易地对各层次上的数据进行汇总或者特征化。另外,使用基于划分的算法(
准备说明:Python代码运行,需要有数据集,文章最后有csv格式的数据集,请自行下载。理论知识讲解:模糊理论模糊控制是自动化控制领域的一项经典方法。其原理则是模糊数学、模糊逻辑。1965,L. A. Zadeh发表模糊集合“Fuzzy Sets”的论文, 首次引入隶属度函数的概念,打破了经典数学“非0即 1”的局限性,用[0,1]之间的实数来描述中间状态。很多经典的集合(即:论域U内的某个元素是
转载 2024-08-13 17:42:44
39阅读
下面是几个城市的GDP等信息,根据这些信息,写一个SOM网络,使之对下面城市进行。并且,将结果画在一个二维平面上。 //表1中,X。为人均GDP(元);X2为工业总产值(亿元);X。为社会消费品零售总额(亿元);x。为批发零售贸易总额(亿元);x。为地区货运总量(万吨),表1中数据来自2002年城市统计年鉴。//城市 X1 X2 X3 Xa X5 北京 27527 2738.30 1
转载 2023-06-20 14:47:21
122阅读
本例中,使用用户注册时间(注册天数reg_length)、活跃(最近活跃间隔天数rec_act_length、近7日活跃天数act_days)和变现(近7日日均广告点击量ad_pd、近7日日均阅读量read_pd)三个维度进行。库导入在这里用到了os用来处理路径,numpy、pandas都是数据分析处理的常用库,matplotlib作简单的图形看指标分布,重头戏就是sklearn啦,用来完成我
转载 2024-03-04 01:25:34
29阅读
一、python代码''' Author: Vici__ date: 2020/5/14 ''' import math ''' Point,记录坐标x,y和点的名字id ''' class Point: ''' 初始化函数 ''' def __init__(self, x, y, name): self.x = x # 横坐标
转载 2023-08-20 10:00:57
60阅读
目录一、聚类分析1、2、Scipy中的算法(K-Means)3、示例 完整代码:运行结果:函数使用:二、图像色彩操作步骤:完整代码:运行结果:三、合并至Flask软件部分代码:运行结果:一、聚类分析1、类聚是把相似数据并成一组(group)的方法。不需要类别标注,直接从数据中学习模式。2、Scipy中的算法(K-Means)  随机选取K个数据点作为“种
转载 2023-08-09 07:28:55
352阅读
文章目录前言Scipy库简单入门1.cluster模块2. constants模块3. fftpack模块4. integrate 模块5. interpolate 模块6. linalg模块7. ndimage模块8. optimize模块9. stats模块10. ord模块总结 前言scipy是一个python开源的数学计算库,可以应用于数学、科学以及工程领域,它是基于numpy的科学计算
转载 2023-10-24 10:18:33
81阅读
阅读前提:了解K-means算法了解Python基本语句知道什么是txt文件code需要当前目录下添加一个city.txt文件。#coding=utf-8 import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans #从磁盘读取城市经纬度数据 X = [] f = open('cit
转载 2023-08-30 15:09:29
100阅读
层次(Hierarchical Clustering)一.概念  层次不需要指定聚的数目,首先它是将数据中的每个实例看作一个,然后将最相似的两个合并,该过程迭代计算只到剩下一个为止,由两个子类构成,每个子类又由更小的两个子类构成。如下图所示:二.合并方法在中每次迭代都将两个最近的进行合并,这个间的距离计算方法常用的有三种:1.单连接(Single-linkage cl
转载 2023-08-18 22:27:43
163阅读
python实现层次 层次(Hierarchical Clustering)一.概念  层次不需要指定聚的数目,首先它是将数据中的每个实例看作一个,然后将最相似的两个合并,该过程迭代计算只到剩下一个为止,由两个子类构成,每个子类又由更小的两个子类构成。如下图所示:二.合并方法在中每次迭代都将两个最近的进行合并,这个间的距离计
1 # -*- coding: utf-8 -*- 2 """ 3 Created on Wed Jan 10 19:18:56 2018 4 5 @author: markli 6 """ 7 import numpy as np; 8 ''' 9 kmeans 算法实现 10 算法原理 11 1、随机选择k个点作为中心点,进行 12 2、求出后的各类的 中心点 1
转载 2023-06-21 21:57:49
93阅读
一、python代码''' Author: Vici__ date: 2020/5/13 ''' import math ''' Point,记录坐标x,y和点的名字id ''' class Point: ''' 初始化函数 ''' def __init__(self, x, y, name, id): self.x = x # 横坐标
转载 2023-07-18 13:43:45
90阅读
k-means 接下来是进入算法的的学习,算法属于无监督学习,与分类算法这种有监督学习不同的是,算法事先并不需要知道数据的类别标签,而只是根据数据特征去学习,找到相似数据的特征,然后把已知的数据集划分成几个不同的类别。比如说我们有一堆树叶,对于分类问题来说,我们已经知道了过去的每一片树叶的类别。比如这个是枫树叶,那个是橡树叶,经过学习之后拿来一片新的叶子,你看了一眼,然后说这是枫树
转载 2023-08-20 23:25:47
175阅读
前言在前面介绍的线性回归, 岭回归, Lasso回归, 逻辑回归均是监督学习, 下面将要介绍一种无监督学习—“"目录正文“物以类聚,人以群分”, 所谓就是将相似的元素分到一""(有时也被称为"簇"或"集合"), 簇内元素相似程度高, 簇间元素相似程度低. 常用的方法有划分, 层次, 密度, 网格, 模型等. 我们这里重点介绍划分.1. 划分划分, 就是
  • 1
  • 2
  • 3
  • 4
  • 5