决策树是机器学习中一种基本的分类和回归算法,是依托于策略抉择而建立起来的树。其主要优点是模型具有可读性,分类速度快,易于理解。决策树的思想主要来源于Quinlan在1986年提出的ID3算法和1993年提出的C4.5算法,以及有Breiman等人在1984年提出的CART算法。1.什么是决策树决策树简单来说就是带有判决规则(if-then)的一种树,可以依据树中的判决规则来预测未知样本的类别和值。
转载
2024-02-09 15:54:00
167阅读
机器学习1. 决策树1.1 原理1.2 sklearn实现 1. 决策树1.1 原理决策树(Decision Trees)是一种用于分类或回归任务的无参数学习方法,其基于树形结构从数据特征中学习对应决策规则(特征选择)用于分类或预测目标值假设对于博客是否需要及时阅读建立决策树模型,如图:叶子节点为最终的分类或预测结果非叶子节点为对应的决策规则(特征/属性)决策树的学习包含三个步骤:①特征选择;②
转载
2024-05-05 07:05:10
77阅读
前言决策树(Decision Tree)是一种基于树结构进行决策分析的算法,可以用于分类和回归问题。我们将从多个方面介绍机器学习决策树,包括决策树原理、算法分析、简单案例。一、原理决策树的基本原理是将数据集分成不同的类别或回归值,通过构建树形结构的模型进行预测。决策树模型由节点和边组成,每个节点表示一个属性或特征,每条边表示一个属性或特征的取值。决策树的根节点表示最重要的特征,其余节点表示次要的特
转载
2024-05-31 17:48:00
497阅读
决策树算法的优点: 1:理解和解释起来简单,且决策树模型可以想象2:需要准备的数据量不大,而其他的技术往往需要很大的数据集,需要创建虚拟变量,去除不完整的数据,但是该算法对于丢失的数据不能进行准确的预测3:决策树算法的时间复杂度(即预测数据)是用于训练决策树的数据点的对数4:能够处理数字和数据的类别(需要做相应的转变),而其他算法分析的数据集往往是只有一种类型的变量5:能够处理多输出的问题6:使用
转载
2024-05-28 14:31:29
63阅读
一、决策树是什么?决策树是一种基于树状结构的机器学习算法,用于解决分类和回归问题。它是一种自上而下的递归分割方法,通过对特征空间的递归划分来构建一个树形模型,用于进行预测和决策。在决策树中,每个内部节点表示对某个特征的测试,每个分支代表该特征的一个取值,而每个叶节点表示一个类别标签或一个回归值。决策树的构建过程是通过对特征空间进行递归划分,使得每个叶节点包含尽可能纯的样本(分类问题)或使得每个叶节
转载
2024-06-13 23:09:42
42阅读
1、概念决策树是一种常见的机器学习方法,可以解决分类问题(二分类、多分类)、回归问题一般的,一棵树包含一个根节点,若干个内部节点、叶子节点,每一个叶子节点代表决策的结果,从根节点到每个叶子节点的路径对应了一条判定的策略。树的生成过程就是决策过程,这个过程是递归的,出现以下三种情况后递归会结束:1)当前节点的样本属于同一个类别2)当前节点样本集为空3)当前节点属性集为空或所有样本在属性上取值相同2、
转载
2024-04-26 11:08:24
51阅读
决策树的核心算法ID3:特征选择方法:信息增益。C4.5:特征选择方法:信息增益比。CART:对于分类树,特征选择方法是基尼指数;对于回归树使用平方误差最小化准则。决策树学习过程特征选择决策树生成: 递归结构,选择最优特征,对训练数据进行分割, 对应于模型的局部最优决策树剪枝: 缩小树结构规模, 缓解过拟合, 对应于模型的全局选择决策树的类别1.分类树 (Classification Tree)原
转载
2024-02-23 21:38:20
43阅读
文章目录一、理论篇1、概述2、基本流程3、划分选择3.1、信息熵和信息增益3.2、增益率3.3、基尼指数3.4、ID3,C4.5,CART三种算法的对比4、剪枝处理5、连续值处理6、缺失值处理 一、理论篇1、概述决策树是一种常见的分类模型,也可用于回归模型,在金融分控、医疗辅助诊断等诸多行业具有较为广泛的应用。决策树的核心思想是基于树结构对数据进行划分,这种思想是人类处理问题时的本能方法。例如在
转载
2024-06-02 16:54:53
76阅读
文章目录分类树与回归树回归树原理介绍最小二乘回归树生成算法CART算法Python代码节点类回归树类简单的例子Python库 分类树与回归树分类树用于分类问题。分类决策树在选取划分点,用信息熵、信息增益、或者信息增益率、或者基尼系数为标准。 Classification tree analysis is when the predicted outcome is the class to whi
转载
2024-03-15 08:50:43
94阅读
(一)认识决策树1、决策树分类原理 决策树是通过一系列规则对数据进行分类的过程。它提供一种在什么条件下会得到什么值的类似规则的方法。决策树分为分类树和回归树两种,分类树对离散变量做决策树,回归树对连续变量做决策树。 近来的调查表明决策树也是最经常使用的数据挖掘算法,它的概念非常简单。决策树算法之所以如此流行,一个很重要的原因就是使用者基本上不用了解机器学习算法,也不用深究它是如何工
转载
2023-11-13 16:34:38
57阅读
一、回归决策树的介绍1.什么是回归决策树回归决策树(Regression Decision Tree)是一种决策树算法,用于解决回归问题。与传统的分类决策树不同,回归决策树的目标是预测连续数值型的输出,而不是离散的类别标签。2.原理概述数据集准备:首先,需要准备训练数据集,包括输入特征和对应的输出值。每个样本都有一组特征值和一个连续数值型的输出。特征选择:选择最佳的特征来划分数据集。常用的划分准则
转载
2023-08-21 10:45:59
306阅读
一、CART决策树模型概述(Classification And Regression Trees)决策树是使用类似于一棵树的结构来表示类的划分,树的构建可以看成是变量(属性)选择的过程,内部节点表示树选择那几个变量(属性)作为划分,每棵树的叶节点表示为一个类的标号,树的最顶层为根节点。通过一系列规则对数据进行分类的过程。它提供一种在什么条件下会得到什么值的类似规则的方法。决策树算法属于有指导的学
转载
2024-05-29 20:26:43
129阅读
决策树要点如下图: 1,CART 算法全称 分类回归树 2,CART 算法其实是一个比较复杂的算法,这里说明一个其简单的形式。 3,CART 算法包括两个步骤:第一步:分裂数据集生成回归树。第二步,为避免过拟合,对回归树进行剪枝处理。 4,CART 算法和决策树ID3算法一样,本质上也是构建一个决策树。它较之ID3算法的不同之处在于:第一,ID3算法每生成一
转载
2024-04-24 15:37:22
27阅读
决策树回归核心思想:相似的输入必会产生相似的输出。例如预测某人薪资:年龄:1-青年,2-中年,3-老年 学历:1-本科,2-硕士,3-博士 经历:1-出道,2-一般,3-老手,4-骨灰 性别:1-男性,2-女性年龄学历经历性别==>薪资1111==>6000(低)2131==>10000(中)3341==>50000(高)…………==>…1322==>?样本数
目录前言一.决策树回归1.1.核心思想二.启发式切分与最优属性选择2.1.回归模型示例2.2.回归树的构建方法递归二分过拟合与正则化3.1.过拟合问题3.2.过拟合问题的解决方法3.2.1.约束控制树的过度生长3.2.2.剪枝3.2.3.正则化 前言 我们在前面部分介绍了决策树分类模型,有不了解的小伙伴可以回到前面学习一下,传统机器学习笔记4——决策树。实际上决策树也可以用作回归任务,我们称之
转载
2023-12-23 20:24:36
574阅读
文章目录什么是决策树构建决策树 决策树——既能分类又能回归的模型 机器学习——决策树。sklearn训练决策树决策树——回归任务什么是决策树决策树是一种非常基础又常见的机器学习模型。 一棵决策树(Decision Tree)是一个树结构(可以是二叉树或非二叉树),每个非叶节点对应一个特征,该节点的每个分支代表这个特征的一个取值,而每个叶节点存放一个类别或一个回归函数。 使用决策树进行决策的过程
转载
2024-04-19 15:43:03
33阅读
决策树树模型是机器学习领域最基础、逻辑最简单的一类机器学习算法,主要有决策树(解决分类问题),回归树(解决回归问题)。这里首先介绍决策树的原理和代表性的算法。原理决策树,顾名思义需要构建树的结构来进行决策(分类);其实决策树的工作过程和人的思考过程是比较类似的,如下图所示:人类在决策过程中,会基于一系列的判别标准,来对某一事务做出最终的决定。决策树正是基于这一思想,在对数据进行分类的时候,判别标准
转载
2024-05-13 15:01:55
450阅读
分类回归树(\(classification\ and\ regression\ tree,\ CART\))既可用于分类也可用于回归。\(CART\)分类树、\(CART\) 回归树统称 \(CART\)\(CART\) 学习分三步:特征选择、决策树的生成、剪枝。\(CART\) 决策树是二叉树。对 \(CART\) 回归树用均方误差最小化准则,\(CART\) 分类树用基尼系数最小化(\(Gi
转载
2023-08-10 12:20:32
209阅读
1 CART算法CART全称叫Classification and Regression Tree,即分类与回归树。CART假设决策树是二叉树,内部结点特征的取值只有“是”和“否”,左分支是取值为“是”的分支,有分支则相反。这样的决策树等价于递归地二分每个特征。 CART分类回归树可以做分类或者回归。如果待预测结果是离散型数据,则CART生成分类决策树;如果待预测结果是连续型数据,则CA
转载
2023-08-07 15:36:36
203阅读
【机器学习】决策树与集成决策树ID3C4.5CART(分类回归树)分类树回归树防止过拟合决策树集成梯度提升树AdaBoostGBDT(即基于一般损失的分类模型)GBRT(即基于一般损失的回归模型)XGBoost损失函数推导特点缺点模型参数LightGBM(light gradient boosting machine)RandomForest 决策树决策树包括分支节点,叶节点,分支。分治节点表示