前言: 博主在自主学习粒子滤波的过程中,看了很多文献或博客,不知道是看文献时粗心大意还是悟性太低,看着那么多公式,总是无法把握住粒子滤波的思路,也无法将理论和实践对应起来。比如:理论推导过程中那么多概率公式,概率怎么和系统的状态变量对应上了?状态粒子是怎么一步步采样出来的,为什么程序里面都是直接用状态方程来计算?粒子的权重是怎么来的?经过一段时间的理解,总算
粒子滤波是以贝叶斯推理和重要性采样为基本框架的。因此,想要掌握粒子滤波,对于上述两个基本内容必须有一个初步的了解。贝叶斯公式非常perfect,但是在实际问题中,由于变量维数很高,被积函数很难积分,常常会给粒子滤波带来很大的麻烦。为了克服这个问题,它引入了重要性采样。即先设计一个重要性密度,根据重要性密度与实际分布之间的关系,给采样得到的粒子分配权重。再利用时变贝叶斯公式,给出粒子权重的更新公式及
转载
2023-09-06 11:02:40
112阅读
一、粒子滤波 粒子滤波(Particle Filter,PF)基于贝叶斯理论,利用了序列蒙特卡洛方法,通过蒙特卡洛模拟实现递推贝叶斯滤波,其核心思想在于解决传统贝叶斯公式中后验概率积分困难、难以求得解析解的问题,即以一系列先验分布的样本的加权来表示后验概率,而不是使用复杂的后验概率密度。 粒子滤波的推导一般可以归纳为包含以下步骤:①理解蒙特卡洛采样;②序贯重要性采样;③重要性重采样。二、理解
转载
2023-12-01 13:08:43
129阅读
滤波器的缺点:EKFSLAM不仅要维护自身的状态,还需要维护地图(特征) 于是必须在内存上做出牺牲,比如500个特征,每个特征在二维环境中是两个点(x轴、y轴),矩阵变为1000x1000,若是三维环境,则1500x1500,状态的方差矩阵规模会变得十分巨大,对计算效益要求很高粒子滤波器:随机撒点(每个点都相当于一个机器人),通过landmark和传感器观测数据来更新点,最后收敛。但是粒子滤波器存
转载
2024-05-16 09:41:52
66阅读
粒子滤波是一种基于蒙特卡洛模拟的非线性滤波方法,其核心思想是用随机采样的粒子表达概率密度分布。粒子滤波的三个重要步骤为:1)粒子采样,从建议分布中抽取一组粒子;2) 粒子加权,根据观测概率分布,重要性分布以及贝叶斯公式计算每个粒子的权值;3)估计输出,输出系统状态的均值协方差等。此外 ,为了应对粒子退化现象,还采用了重采样等策略。1. 蒙特卡洛模拟 蒙特卡洛是一种利用随机数来
转载
2024-01-29 12:39:37
39阅读
# 粒子滤波室内定位实现教程
粒子滤波是一种基于随机采样的贝叶斯滤波方法,通常用于动态系统的状态估计。在室内定位中,粒子滤波可以帮助我们通过传感器数据估计目标的位置。本文将教你如何在Python中实现一个简单的粒子滤波算法。以下是我们将要完成的步骤:
| 步骤 | 描述 |
|-------|---------
粒子滤波实现刀具寿命预测(附python代码)(代码更新,增加重采样函数)背景介绍刀具失效是加工过程中的主要问题,通过多特征融合方法实现刀具磨损量预测后建立了刀具的健康指标。接下来就是利用得到的健康指标对刀具的剩余寿命进行预测。粒子滤波则是一种常用的方法。 关于粒子滤波的理论知识参见粒子滤波理论。 本文主要讲解通过python简单实现基于粒子滤波的刀具寿命预测思路以及简要的代码。粒子滤波的主要流程
转载
2023-10-11 22:30:53
205阅读
# -*- coding: utf-8 -*-
from math import *
import random
# 机器人四个参照物
landmarks = [[20.0, 20.0], [80.0, 80.0], [20.0, 80.0], [80.0, 20.0]]
# 地图大小
world_size = 100.0
class robot:
def __init__(self
转载
2023-10-13 21:46:24
10阅读
我们用简单且直白的话来讨论首先,我们来说说为什么需要采用概率论的方法来进行定位?高票答案已经把状态方程和观测方程的公式给出来了,而且关于公式的内容解释也非常的完善了。我这里主要讲给刚入门的同学们听。相信学过现代控制原理的同学都明白,状态方程是根据上一时刻的状态对这一时刻的估计,好,问题来了,为什么要估计,因为我们采得到的图像有噪声(或者直接说有误差,简单的大白话的感觉就是,你遍历的图像数据,第一,
转载
2024-03-08 18:19:17
43阅读
粒子滤波: 相对于卡尔曼滤波,粒子滤波只有在系统非线性较明显时有精度提升,以及观测值不能进行线性化处理时(如地图的穿墙约束),但粒子滤波的计算量是卡尔曼滤波的数倍及以上。如果不满足上列条件,粒子滤波并不能带来定位精度上的优势,反而增加了系统计算量。 卡尔曼滤波、扩展卡尔曼滤波、无迹卡尔曼滤波以及粒子滤波
重采样主要是为了解决经典蒙特卡洛方法中出现的粒子匮乏现象。其主要思想是对粒子和其相应的权值表示的概率密度函数重新进行采样。通过增加权值较大粒子和减少权值较小粒子来实现。重采样虽然可以改善粒子匮乏现象,但也降低了粒子的多样性。两种较为常用的重采样算法:轮盘赌、低方差采样。一、轮盘赌(独立随机采样)每个粒子对应的权重大小就是图中各奖项对应的面积大小。每次采样就是转动一次转盘。
转载
2023-11-06 22:54:19
334阅读
文档下载链接: 粒子滤波算法是一种非线性的滤波方法。其大致思路如下(这里以图像目标(人)跟踪为例): 1、 首先在整个图像中随机初始化一些粒子点,并对每个粒子点分配权值 2、 在视频中框出待跟踪目标 3、 更新权值,增加靠近框出的目标粒子权值 4、 根据状态转移矩阵和测量数据,对粒子权重,对粒子进行重采样粒子滤波示过程示意图 初始化图像粒子点和权重 框出待跟踪目标 更新权重,其中权重较小的直接舍弃
转载
2024-02-04 01:59:38
264阅读
粒子滤波是一种用于估计动态系统状态的有效方法,广泛应用于机器人、计算机视觉、金融等领域。我们将通过Python实现粒子滤波的方法详细记录下来,内容涵盖环境准备、集成步骤、配置详解、实战应用、性能优化以及生态扩展。
## 环境准备
为了顺利实现粒子滤波,我们需要首先准备好相应的环境。以下是支持的技术栈,确保兼容性:
- **Python**(版本3.6及以上)
- **NumPy**(用于高效
1 #转
2 # -*- coding=utf-8 -*-
3 # 直接运行代码可以看到跟踪效果
4 # 红色的小点代表粒子位置
5 # 蓝色的大点表示跟踪的结果
6 # 白色的方框表示要跟踪的目标
7 # 看懂下面两个函数即可
8 from numpy import *
9 from numpy.random import *
10
11 def resample(weight
转载
2023-05-29 22:19:46
269阅读
该博文集成了几个重要的参考博客,首先感谢这些博主的讲解和实现,因此是转载,不是原创。一. 首先从通俗易懂的层面来理解一下粒子滤波,主要是博主(饮水思源)的博客。粒子滤波可以先分为几个主要的阶段:初始化阶段 ---> 预测阶段--->矫正阶段--->重采样--->滤波初始化阶段:主要就是选定粒子数量。也就是博主所说的放狗去搜索目标;放狗的方式有很多中,一种是让他们均匀分布,第
转载
2023-10-12 21:39:19
115阅读
# Python粒子滤波
## 引言
粒子滤波(Particle Filter)是一种用于非线性非高斯系统中状态估计的强大工具。它可以有效地处理非线性系统和非高斯噪声的情况,因此在机器人定位、目标跟踪、传感器融合等领域得到了广泛应用。在本文中,我们将介绍粒子滤波的原理,并用Python实现一个简单的粒子滤波器。
## 粒子滤波原理
粒子滤波是一种基于蒙特卡洛模拟的状态估计方法。其基本思想是
原创
2023-08-26 08:20:34
382阅读
粒子滤波原理粒子滤波是基于蒙特卡洛仿真的近似贝叶斯滤波算法。我们可以从贝叶斯滤波的过程来相应的给出粒子滤波的过程。贝叶斯滤波公式推导分为两步,详细推导过程请见:崔岩的笔记——粒子滤波原理及应用(2)蒙特卡洛法与贝叶斯网络。第一步为状态预测,即通过上一时刻的状态量和当前时刻的控制量预测当前时刻的状态量: 第二步为量测更新,即通过当前时刻的观测量来修正当前时刻状态量的预测量: 式中代表归一化常数。
转载
2023-08-03 14:10:00
124阅读
Monte carlo的思想,即以某事件出现的频率来指代该事件的概率。因此在滤波过程中,需要用到概率如P(x)的地方,一概对变量x采样,以大量采样的分布近似来表示P(x)。因此,采用此一思想,在滤波过程中粒子滤波可以处理任意形式的概率,而不像Kalman滤波只能处理高斯分布的概率问题。对任意如下的状态方程: \[x(t)=f[x(t-1),u(t)
转载
2023-09-26 17:00:14
64阅读
上学的时候每次遇到“粒子滤波”那一堆符号,我就晕菜。今天闲来无事,搜了一些文章看,终于算是理解了。下面用白话记一下我的理解。问题表述:某年月,警方(跟踪程序)要在某个城市的茫茫人海(采样空间)中跟踪寻找一个罪犯(目标),警方采用了粒子滤波的方法。1. 初始化:警方找来了一批警犬(粒子),并且让每个警犬预先都闻了罪犯留下来的衣服的味道(为每个粒子初始化状态向量S0),然后将警犬均匀布置到城市的各个区
转载
2023-07-23 16:08:49
105阅读
前言:粒子滤波器相较于卡尔曼滤波器或者UKF无迹卡尔曼滤波器而言,可以表达强非线性的变换且无需假设后验分布为高斯分布,在描述多峰分布时具有非常大的优势。粒子滤波器被广泛的应用于机器人系统中,如著名的Gmapping算法便是在粒子滤波器的基础上实现的,但是当前网络中对粒子滤波器的描述往往浅尝则止或长篇大论,导致学习起来往往是了解大概流程而不懂实际代码实现,无法应用于自己机器人中或困于理论推导。因此本
转载
2023-12-01 13:32:02
119阅读