文章目录opencv色域转换色域转换的本质捕获指定区域(采用获取指定范围的掩码实现捕获)cv.inRange()函数获取指定数据的范围——也就是掩饰掉我们需要的数据之外的数据图像与cv.bitwise_and(),实现掩码与原图像融合通过色域选定实现对象追踪实现思路代码实例(实现蓝色追踪)效果 opencv色域转换将会使用cv.cvtColor()函数实现图像色域的转换,它的参数如下第一个参数
方框滤波是均值滤波的一般形式,在均值滤波中,将滤波器中所有的像素值求和后的平均值作为滤波后结果,方框滤波也是求滤波器内所有像素值的之和,但是方框滤波可以选择不进行归一化,就是将所有像素值的和作为滤波结果,而不是所有像素值的平均值OpenCV 4中提供了boxFilter()函数实现方框滤波,该函数的函数原型在代码清单5-10中给出。void cv::boxFilter(InputArray s
转载 2024-06-16 12:58:53
47阅读
为什么要使用滤波消除图像中的噪声成分叫作图像的平滑化或滤波操作。信号或图像的能量大部分集中在幅度谱的低频和中频段是很常见的,而在较高频段,感兴趣的信息经常被噪声淹没。因此一个能降低高频成分幅度的滤波器就能够减弱噪声的影响。 如下图,左图带有椒盐噪声,右图为使用中值滤波处理后的图片。 图像滤波的目的有两个:一是抽出对象的特征作为图像识别的特征模式;另一个是为适应图像处理的要求,消除图像数字化时所混入
目录:对像素值进行统计。因为每个像素值的像素是0-255,对每个像素值有多少个像素点进行统计的。图像直方图是反映一个图像像素分布的统计表,其实横坐标代表了图像像素的种类,可以是灰度的,也可以是彩色的。纵坐标代表了每一种颜色值在图像中的像素总数或者占所有像素个数的百分比。图像是由像素构成,因为反映像素分布的直方图往往可以作为图像一个很重要的特征。上图显然 100+ 像素值的像素是最多的。14个像素点
    网上移植Opencv到ARM+linux上的教程很多,叫我们如何把OV9650采集的数据传递给opencv使用的教程也很多,但是说的模棱两可,没有一个确切的说法。我在这里总结一下。   一般我们OV9650采集的数据得先经过OpenCV处理以后才会给qt显示,所以要转换两次:第一次是OV9650采集的数据要放到IplImage结构里面,这样
转载 2024-04-16 10:41:53
148阅读
      本章中我们学习一下通过backproject直方图,得到一副图像中每个像素属于该直方图的概率。在下边原始图中(左图),我们框选了一块四边形的区域,计算该区域的灰度直方图,然后通过下面的函数calcBackProject,计算图像src中每个像素在直方图中的概率,最终的结果在result中,result中每个像素表示该像素在直方图中的概率
OpenCV–图像平滑(均值滤波、方框滤波、高斯滤波、中值滤波)首先看以下图,图像平滑(模糊)只是滤波中的一种操作,并不是整个滤波部分。 一、均值滤波函数:dst = cv.blur( src, ksize[, dst[, anchor[, borderType]]] ) src:输入图像; ksize: 卷积核大小; anchor: 锚点位置设置,默认为卷积核的中心位置; borderT
#include<opencv2/opencv.hpp>#include<iostream>#include <vector>int main(int argc, char** argv) { cv::Mat src(5, 4, CV_8UC3, cv::Scalar(10, 20, 30)); std::cerr << src &lt
原创 2022-01-25 13:53:21
1238阅读
作者:cvvision 链接:http://www.cvvision.cn/8907.html 二、22、均值滤波 均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素(以目标象素为中心的周围8个像素,构成一个滤波模板,即去掉目标像素本身),再用模板中的全体像素的平均值来代替原来像素值。 不足之处:均值滤波本身存在着固有的缺陷,即它不能很好地保护图像细节
0 背景双目摄像头输出就是左边和右边两个摄像头的传感器数据,在经过摄像头板载的DSP传输到电脑后,会产生两张图片文件。看到网上有人把两张图片合成,做出了3D电影中的效果。我也想尝试一下。1 环境OpenCV3.4.2和OpenCV3.1.0都可以。C++。2 原理opencv读取了彩色图片后,获得的Mat文件每个像素都有三个通道的数据,分别是BGR(蓝色绿色红色)。找到了读取像素的例程,在其中修改
转载 2024-04-11 08:27:27
97阅读
## 实现Python opencv 计算图像灰度均值 ### 介绍 在计算机视觉领域中,图像灰度均值是一个常用的指标,用于衡量图像的亮度。在本文中,我们将使用Python和OpenCV库来计算图像的灰度均值。我将向你展示整个实现流程,并逐步解释每个步骤需要做什么,以及相应的代码。 ### 整体流程 下面是实现图像灰度均值的整体流程: | 步骤 | 描述 | | --- | --- | |
原创 2023-09-29 01:14:55
250阅读
1.opencv的追踪算法1.1opencv的八个追踪算法"csrt": cv2.TrackerCSRT_create, "kcf": cv2.TrackerKCF_create, "boosting": cv2.TrackerBoosting_create, "mil": cv2.TrackerMIL_create, "tld": cv2.TrackerTLD_create, "medianfl
本节目标:获取、修改像素值获取图像的属性设置图像区域(ROI)分割及合并图像通道本节所涉及的操作主要是关于numpy的,而不是opencv,想要写出高效的opencv代码需要对numpy有很好的了解。获取并修改像素值首先加载一个彩色图像>>> import cv2 >>> import numpy as np >>> img = cv2.im
转载 2023-10-03 19:37:53
303阅读
1.1彩色空间颜色是外来的光刺激作用于人的视觉器官而产生的主观感觉,它具有色调、饱和度和亮度三个特性。物体的颜色不仅取决于物体本身,还与光源、周围环境的颜色,以及观察者的视觉系统有关1.1.1颜色的基本特性1.光与颜色从根本上讲,光是人的视觉系统能够感知到的电磁波,其波长在380nm--780nm之间,正是这些电磁波使人产生了红、黄、蓝等颜色的感觉。光可由它的光谱能量分布p(λ)来表示 ,其中λ是
前言在上一篇理论文章中我们介绍了YUV到RGB之间转换的几种公式与一些优化算法,今天我们再来介绍一下RGB到YUV的转换,顺便使用Opengl ES做个实践,将一张RGB的图片通过Shader 的方式转换YUV格式图,然后保存到本地。可能有的童鞋会问,YUV转RGB是为了渲染显示,那么RGB转YUV的应用场景是什么?在做视频编码的时候我们可以使用MediaCodec搭配Surface就可以完成,貌
转载 2024-07-04 05:30:33
203阅读
一、简介与实际应用PCA 主要用于获取物体的主要方向以及对数据进行降维度处理。PCA 的主要思想是在一堆维度的数据中找到能体现特性的几个重要的特性,从而降低计算量,把那些不特别重要的属性从这些数据中剔除掉。二、数学原理推导   三、 opencv中的PCA类PCA::PCA(InputArray data, InputArray mean, int flag
一、颜色空间转换import cv2 import numpy as npimg = cv2.imread('lena.jpg')# 转换成灰度图 img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) cv2.imshow('img', img) cv2.imshow('gray', img_gray) cv2.waitKey(0)颜色转换其实是数学运算
转载 2023-07-05 17:46:40
362阅读
目录 大津阈值法(OTSU) 固定阈值法 自适应阈值 双阈值法 半阈值法大津阈值法(OTSU)最大类间方差法(otsu)的公式推导:记t为前景与背景的分割阈值,前景点数占图像比例为w0,平均灰度为u0;背景点数占图像比例为w1,平均灰度为u1。则图像的总平均灰度为:u=w0*u0+w1*u1。前景和背景图象的方差:g=w0*(u0-u)*(u0-u
转载 2024-01-10 13:52:45
390阅读
K均值聚类算法在cxcoer中,因为它在ML库诞生之前就存在了.K均值尝试找到数据的自然类别.用户设置类别个数,K均值迅速地找到"好的"类别中心."好的"意味着聚类中心位于数据的自然类别中心.K均值是最常用的聚类计数之一,与高斯混合中的期望最大化算法(在ML库中实现为CvEM)很相似,也与均值漂移算法(在CV库中实现为cvMeanShift())相似.K均值是一个迭代算法,在OpenCV中采用的是
转载 2024-04-08 21:27:24
96阅读
rgb摄像头和普通摄像头区别一个RGB摄像头由三根不同的线缆给出了三个基本彩色成分。这种类型的摄像头通常是用三个独立的CCD传感器来获取三种彩色信号。而普通的摄像头却只有一个,这就造成了普通摄像头只能拍出黑白的,而rgb摄像头可以拍出彩色的‘简单点就是说一个是彩色摄像头,一个是黑白摄像头。IMAQ PCI/PXI-1409板卡可以通过RGB摄像头来获得彩色图像。对于一个StillColor类型的R
  • 1
  • 2
  • 3
  • 4
  • 5