数据是机器学习模型的生命燃料。对于特定的问题,总有很多机器学习技术可供选择,但如果没有很多好的数据,问题将不能很好的解决。数据通常是大部分机器学习应用程序中性能提升背后的驱动因素。 有时,数据可能很复杂。
转载 2018-11-19 11:29:00
180阅读
2评论
pca基础知识不了解的可以先看下一这篇博客​         具体算法实现如下:1 import numpy as np 2 import matplotlib.pyplot as plt 3 # 载入数据 4 data = np.genfromtxt("data.csv", delimiter=",") 5
原创 2022-06-27 21:36:33
181阅读
在主成分分析(PCA)中,介绍了PCA的数学原理,其有用Matlab能够非常方便地对矩阵进行操作!比方,用Matlab求多个样本的协方差矩阵、求矩阵的特征根和特征向量等。以下介绍用Matlab实现PCA:如果有4个样本A、B、C、D,每一个样本都是6维。>> A=[1,2,3,4,5,6];>> B...
转载 2015-03-25 15:58:00
171阅读
2评论
PCA 实现:​ from __future__ import print_functionfrom sklearn import datasetsimport matplotlib.pyplot as pltimport matplotlib.cm as cmximport matplotlib.colors as colorsimport numpy as np# matplotlib inl
转载 2019-08-26 21:05:00
335阅读
2评论
PCA是一种常用于处理多重共线性的特征提取方法。在这种情况下,PCA的最大优点是,在应用它之后,每个“新”变量将彼此独立
PCA
转载 2021-07-16 16:19:33
195阅读
作者 | Guillermina Sutter Schneider
转载 2021-07-16 16:18:48
468阅读
://blog..net/jerr__y/article/details/53188573 本文主要参考下面的文章,文中的代码基本是把第二篇文章的代码手写实现了一下。 - pca讲解:://../jerrylead/archive/2011/04/1
转载 2018-01-13 20:15:00
272阅读
2评论
PCA(Principle Component Analysis)主成分分析是广泛使用的降维算法,由PCA的名字就可以知道,PCA的主要目标是把数据维度降下来,使得减少数据冗余,降低数据处理带来的计算资源消耗。1 PCA原理3 PCA代码实现PCA降维import numpy as np import pandas as pd import matplotlib.pyplot as plt fro
转载 2024-01-09 20:35:09
23阅读
一些应用 PCA 的建议 第八周 编程作业
转载 2020-01-23 12:37:00
224阅读
2评论
我目前认为的,并不代表正确 pca主要用于降维 图片来源:https://www.zhihu.com/question/41120789/answer/474222214 例如二维到一维,求协方差矩阵的单位特征向量,得a1和a2,其中一个就为x轴得方向向量,一个为y的 让x和y一个乘a1,一个乘a2 ...
转载 2021-09-21 18:00:00
166阅读
3评论
主成分分析(Principal components analysis)-最大方差解释
转载 2023-04-12 11:42:18
78阅读
理论部分可以看斯坦福大学的那份讲义
原创 2022-01-18 10:31:08
128阅读
参考: [1] 机器学习-白板推导系列(五)-降维(Dimensionality Reduction)
转载 2019-04-15 20:31:00
151阅读
1点赞
3评论
PCA(Principal Component Analysis),称主成分分析,从统计学的角度来说是一种多元统计方法。PCA通过将多个变量通过线性变换以选出较少的重要变量。它往往可以有效地从过于“丰富”的数据信息中获取最重要的元素和结构,去除数据的噪音和冗余,将原来复杂的数据降维,揭...
转载 2013-11-12 20:22:00
206阅读
2评论
基于PCA的图像压缩实现注:该内容为校内课程实验,仅供参考,请勿抄袭! 源码:​​​PPCA-for-Image-Compession​​摘要   随着计算机互联网的发展和数据的日益增长,如何高效的处理和传输海量数据成为大数据处理的瓶颈问题,尤其对于图像类数据,通常其占有空间大,包含信息量丰富,如何对图像数据进行压缩吸引广大研究者们的注意。本文通过调研PCA图像压缩的相关工作,认为当前方法依赖于整
原创 2022-12-22 02:27:05
510阅读
1. 前言PCA : principal component analysis ( 主成分分析)最近发现我的一篇关于PCA算法总结以及个人理解的博客的访问量比较高, 刚好目前又重新学习了一下PCA (主成分分析) 降维算法, 所以打算把目前掌握的做个全面的整理总结, 能够对有需要的人有帮助。 自己再看自己写的那个关于PCA的博客, 发现还是比较混乱的, 希望这里能过做好整理。 本文的所有
主成分分析,即Principal Component Analysis(PCA),是多元统计中的重要内容,也广泛应用于机器学习和其它领域。它的主要作用是对高维数据进行降维。PCA把原先的n个特征用数目更少的k个特征取代,新特征是旧特征的线性组合,这些线性组合最大化样本方差,尽量使新的k个特征互不相关。关于PCA的更多介绍,请参考:https://en.wikipedia.org/wiki/Prin
import cv2import numpy as npimport osfrom sklearn import neighborsimport tkinterfrom tkinter import filedialog#读取人脸数据库#准备训练数据'''def openfile(): r = filedialog.askopenfilename(title='选择要识别...
原创 2021-06-18 15:54:06
642阅读
文章目录PCA 理论及应用PCA算法流程MATLAB代码实现-调用SVD(奇异值
原创 2023-04-10 16:15:31
223阅读
为了
  • 1
  • 2
  • 3
  • 4
  • 5