图像增强简介 分段线性法变换原理 代码实现和效果预览 疫情期间,楼主作为大三学生每天除了要应付网课和作业之外还得抽出时间准备研究生考试。虽说少了很多时间学习自己喜欢的知识,但近期由于课程作业关系需要在matlab上实现简单的图像处理的操作,楼主自然的想到先前曾接触过的Opencv功能强大便考虑能否自己实现其中的一些函数,经过一下午的折腾也算简单的实现了一个简单的部分。 苦中作乐,特写下此篇博客记录
import cv2import numpy as npif __name__ == "__main__": img_path = "lu.jpeg" img = cv2.imread(img_path) #获取图片的宽和高 width,height = img.shape[:2][::-1] #将图片缩小便于显示观看 img_resize = cv2.resi
原创 2023-01-13 06:24:56
187阅读
1. 图像反转灰度级范围[0, L - 1]的一幅图像的反转图像可以由下式给出:s = L -1 -r .图像反转可以用于处理特别适用于增强嵌入在一幅图像的暗区域中的白色或灰色细节,特别是当黑色面积在尺寸上占主导地位时。如:数字乳房x射线照片代码:Image_original = imread('D:\图像处理\image\DIP3E_Original_Images_CH03\Fig0304(a)
目录一、灰度原理1.1 图像的存储与像素1.1.1 像素与分辨率1.1.2 物理原理1.2 RGB图像1.3 灰度图像二、RGB转灰度公式一、灰度原理1.1 图像的存储与像素1.1.1 像素与分辨率像素是影像显示的基本单位,是一个具有明确位置和颜色值的方格。分辨率指的是一个显示系统对图像细节的分辨能力,通常以长边像素个数乘以宽边像素个数来表示。目前有多种分辨率,如VGA,HD,4K等。以VGA为例
转载 2024-03-25 17:14:50
204阅读
图像灰度化的目的是为了简化矩阵,提高运算速度。彩色图像中的每个像素颜色由R、G、B三个分量来决定,而每个分量的取值范围都在0-255之间,这样对计算机来说,彩色图像的一个像素点就会有256*256*256=16777216种颜色的变化范围!而灰度图像是R、G、B分量相同的一种特殊彩色图像,对计算机来说,一个像素点的变化范围只有0-255这256种。假设我们现在有一幅彩色图像,但是我们现在想得到它的
一.简介在处理图像中,二值化图像(只含灰度值0或1)比灰度图像和彩色图像的计算速度最快一副图像包括目标背景噪声等想要提取目标物体,通常是采用灰度变换的阈(yu)值化操作图像的阈值化操作就是将图像像素点分布规律,设定阈值进行像素点分割,进而得到图像的二值图像 图像阈值化的方法有:经典OTSU 固定阈值 自适应阈值 双阈值 半阈值 二.OTSU阈值化OTSU算法是在1979年提出的
转载 2023-11-02 07:34:41
94阅读
引言OpenCV是计算机视觉中经典的专用库,其支持多语言、跨平台,功能强大。OpenCV-Python为OpenCV提供了Python接口,使得使用者在Python中能够调用C/C++,在保证易读性和运行效率的前提下,实现所需的功能。 1.图像的基本概念灰度灰度使用黑色来显示物体,即黑色为基准色,不同饱和度的黑色来显示图像。 通常,像素值量化后用一个字节(8B)来表示,如把有黑-灰-白连续变化的
对数变换的公式为:其中c为常数,r>=0 对数变换目前我知道的有两个作用:①因为对数曲线在像素值较低的区域斜率较大,像素值较高的区域斜率比较低,所以图像经过对数变换之后,在较暗的区域对比度将得到提升,因而能增强图像暗部的细节。②图像的傅里叶频谱其动态范围可能宽达0~10^6。直接显示频谱的话显示设备的动态范围往往不能满足要求,这个时候就需要使用对数变换,使得傅里叶频谱的动态范围被合
7、灰色图转彩色图像(查表映射):灰色图转化成彩色图,实际上是将灰色图的不同黑白程度对应到不同的其他颜色,是一种颜色一一对应的方法,在实际中,有的图片保存也有这种方式,里面保存了一张表,像素点保存的是索引值。#include <vtkSmartPointer.h> #include <vtkJPEGReader.h> #include <vtkImageLuminan
点运算又称为对比度增强、对比度拉伸或灰度变换,是一种通过图像中的每一个像素值(即像素点上的灰度值)进行运算的图像处理方式。它将输入图像映射为输出图像,输出图像每个像素点的灰度值仅由对应的输入像素点的灰度值决定,运算结果不会改变图像内像素点之间的空间关系,其运算的数学关系式: 其中表示原图像,表示经过点运算处理后的图像,表示点运算的关系函数。按照灰度变换的数学关系点运算可以分为线性灰度变换、分段线性
C++版的opencv读取灰度图像可以有不同的方法,这里列出几种方法,并简述它们的区别。这里用到的两张图片为lena.jpg(彩色)和lena.bmp(灰度)直接读取灰度图像图像本身就是灰度图像,直接使用imread()读取图像:#include <opencv2/opencv.hpp> #include <iostream> using namespace cv; usi
# Java OpenCV 图像灰度处理 ## 简介 在计算机视觉和图像处理中,图像灰度处理是一种常见的操作。灰度处理是将彩色图像转换灰度图像的过程,灰度图像中的每个像素只有一个亮度值,通常在0到255之间。灰度处理可以简化图像处理的复杂性,减少计算量,并提取图像中的有用信息。 OpenCV是一个开源的计算机视觉库,提供了丰富的图像处理功能。在Java中使用OpenCV进行图像灰度处理非常
原创 2023-09-04 13:39:34
163阅读
灰度图是指用灰度表示的图像灰度是在白色和黑色之间分的若干个等级,其中最常用的是256级,也就是256级灰度图。灰度图在医学、航天等领域有着广泛的应用。如何将一幅彩色图像转换灰度图呢?根据人眼对红绿蓝三色的敏感程度,可以使用以下比例式进行转换:          Gray = R*0.3+G*0.59+B*0.11
转载 2023-11-02 10:16:36
98阅读
# Java OpenCV灰度图像的实现 ## 简介 在本文中,我将向你展示如何使用Java OpenCV库将彩色图像转换灰度图像。首先,我们将概述整个流程,并用表格展示每个步骤。然后,我将逐步解释每个步骤需要做什么,并提供相应的代码示例。 ## 整体流程 下表列出了将彩色图像转换灰度图像的步骤: | 步骤 | 描述 | | --- | --- | | 步骤1 | 加载彩色图像
原创 2023-12-31 10:03:42
120阅读
【步骤】1、滤波:减少噪声,主要使用高斯滤波2、增强:增强算法可以将图像灰度点邻域强度值有显著变化的点凸显出来,在具体编程实现时,可通过计算梯度幅值来确定。3、检测:经过增强的图像,往往邻域中有很多点的梯度值比较大,而在特定的应用中,这些点并不是我们要找的边缘点,所以应该采用某种方法来对这些点进行取舍。通常用阈值【cannny算子】Canny 的目标是找到一个最优的边缘检测算法(低错误率、高定位性
前言:本章的图像处理都是在空间域上进行的。   空间域是包含图像像素的简单平面,空间域技术直接操作图像的像素。某些图像处理的任务需要在空间域中执行效率更高或者更有意义,而另一些任务则更适合其它办法。图像增强的三类基本函数:线性函数,对数函数,幂函数A.线性函数 图像反转,使用反转变换,s=L-1-r,可以将灰度级范围在[0,L-1]的一幅图像进行反转。B.对数函数 
转载 2024-06-05 19:32:08
62阅读
项目中图片文件非常大,是很多张图片(灰度图)的数据都放在一个此文件中,其实文件的头部还是bmp头部。用opencv里边的cvLoadImage的话只能读取第一张图片的数据,因为读取图片的数据的多少是由文件头部的宽(width)与高(height)决定的。于是就想能不能fopen该文件然后直接定位到文件的数据部分,然后把该部分的数据copy到opencv的imageData中,就能使用opencv
转载 2023-10-04 21:07:54
183阅读
灰度变换一、灰度变换概念二、灰度变换的作用三、灰度变换的方法灰度化一、灰度的概念二、对彩色图进行灰度化1.加权平均值法2.取最大值3.平均值灰度的线性变换1.线性变换2.分段线性变换灰度的非线性变换1.对数变换2.幂律变换总结 一、灰度变换概念在图像预处理中,图像灰度变换是图像增强的重要手段,灰度变换可以使图像对比度扩展,图像清晰,特征明显,灰度变换主要利用点运算来修正像素灰度,由输入像素点的
2.opencv图像灰度处理方法:·        图像灰度化处理就是将一幅彩色图像转换灰度图像的过程。彩色图像通常包括R、G、B三个分量,分别显示出红绿蓝等各种颜色,灰度化就是使彩色图像的R、G、B三个分量相等的过程。灰度图像中每个像素仅具有一种样本颜色,其灰度是位于黑色与白色之间的多级色彩深度,灰度值大的像素
图像的组成灰度灰度使用黑色调表示物体,即用黑色为基准色,不同的饱和度的黑色来显示图像。 每个灰度对象都具有从 0%(白色)到 灰度条100%(黑色)的亮度值。灰度最高相当于最高的黑,就是纯黑。灰度最低相当于最低的黑,也就是“没有黑”,那就是纯白。用于显示的灰度图像通常用每个采样像素8 bits的非线性尺度来保存,这样可以有256种灰度(8bits就是2的8次方=256),取值
  • 1
  • 2
  • 3
  • 4
  • 5