1,关于小波变换的原理不再总结,以前转载过别人的文章,这篇是工程实现的原理总结。2,关于小波变换的实现有mallat滤波器组的方法和提升小波的方法。3,mallat滤波器组的方法大致框架如下其中G和H的关系式为而H可以由matlab中wfilters命令得到。下图是基于查找表的mallat算法框架用matlab卷积的方法实现的小波分解与合成,弄了一个正弦序列,长度1000,有噪声,通过wavede            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-12-09 15:54:18
                            
                                138阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            带通滤波参数b决定是普通滤波器还是带通滤波器小波变换前先进行卡尔曼平滑滤波小波变换的作用: [c,l] = wavedec(y(:,i),3,'db4');wavedec函数用于一维小波变换,对信号进行多层分解[c,l]=wavedec(x,N,’wname’,),c表示各层分量,包括近似系数和细节系数,l表示各层分量长度,x表示原始信号,N分解的层数,wname小波基名称。这里对信号进            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-12-15 10:48:34
                            
                                137阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            连续小波变换的计算     对上面公式的解释将在本节中进行详细说明。以x(t)作为被分析的信号。选用的小波作为信号处理中用到的所有窗函数的原型。应用的所有窗都是母小波的放大(或缩小)和平移版本。有很多函数可以满足这个条件。Morlet小波和墨西哥帽小波(Mexican hat)是其中最有代表性的,本章中后面部分中所举的例子也会用这两个小波进行小波分析。&nb            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-07-02 14:38:24
                            
                                299阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            从傅里叶变换到小波变换,并不是一个完全抽象的东西,可以讲得很形象。小波变换有着明确的物理意义,如果我们从它的提出时所面对的问题看起,可以整理出非常清晰的思路。   下面我就按照傅里叶-->短时傅里叶变换-->小波变换的顺序,讲一下为什么会出现小波这个东西、小波究竟是怎样的思路。 
 一、傅里叶变换   关于傅里叶变换的基本概念在此我就不再赘述了,默认大家现在正处在理解了傅里叶但还没理解            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-06-15 16:54:15
                            
                                11阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            从傅里叶变换(傅里叶变换原理)到小波变换,并不是一个完全抽象的东西,可以讲得很形象。小波变换有着明确的物理意义,下面我就按照傅里叶–>短时傅里叶变换–>小波变换的顺序,讲一下小波变换一、傅里叶变换默认大家现在正处在理解了傅里叶变换,但还没理解小波的道路上。下面我们主要讲傅里叶变换的不足。即我们知道傅里叶变换可以分析信号的频谱,那么为什么还要提出小波变换?答案就是,“对非平稳过程,傅里叶            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-06-27 10:50:31
                            
                                103阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            前言最近在做数字信号处理方面的内容,需要用到小波变换来进行降噪滤波,具体实现如下。一、小波分解代码#define FILTER_LEN					 (8)			//滤波器长度
#define ADS_WAVELET_LEN             (260)			//数据的长度
//多级小波分解,"db4"
double db4_Lo_D[8] = { -0.0105974017850690, 0.            
                
         
            
            
            
            小波可以认为是一个带通滤波器,只允许频率和小波基函数频率相近的信号通过。小波变换的基本思想是用一组小波函数和基函数表示一个函数或者信号。haar小波变换首先,以haar小波变换过程为例来理解小波变换。例:求只有4个像素[9 7 3 5]的图像的哈尔小波变换系数。 计算步骤如下:步骤1:求均值(averaging),也叫Approximation。计算相邻像素对的平均值,得到一幅分辨率比较低的新图像            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-10-20 18:06:02
                            
                                128阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            小波变换的方法从傅里叶变换到小波变换,并不是一个完全抽象的东西,可以讲得很形象。小波变换有着明确的物理意义,如果我们从它的提出时所面对的问题看起,可以整理出非常清晰的思路。下面我就按照傅里叶–>短时傅里叶变换–>小波变换的顺序,讲一下为什么会出现小波这个东西、小波究竟是怎样的思路。(反正题主要求的是通俗形象,没说简短,希望不会太长不看。。)一、傅里叶变换 关于傅里叶变换的基本概念在此我            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-07-01 21:25:39
                            
                                9阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            前言 上篇博客中讲了连续时间信号的离散小波变换的多分辨分析、小波函数、尺度函数等概念,而在我们具体应用离散小波变换时,我们并不关心我们的尺度函数、小波函数具体是什么形式的,因为毕竟反映信号主干信息和细节信息的是尺度函数、小波函数的系数而不是其函数的具体形式,那么有什么方法可以跳过小波、尺度函数直接求得小波、尺度函数的系数呢?这就引出了这篇博客的内容,滤波器与Mallat算法。主要内容 首先我们利用            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-08-24 16:29:27
                            
                                261阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            小波可以认为是一个带通滤波器,只允许频率和小波基函数频率相近的信号通过。小波变换的基本思想是用一组小波函数和基函数表示一个函数或者信号。haar小波变换 首先,以haar小波变换过程为例来理解小波变换。例:求只有8个像素[2,4,6,8,10,12,14,16]的图像的哈尔小波变换系数。 计算步骤如下:步骤1:求均值(averaging),也叫Approximation。计算相邻像素对的平均值,得            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-12-09 16:25:56
                            
                                92阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            文章目录前言一、小波处理信号的一般过程二、分解算法1. 分解迭代2. 多分辨率分解算法三、重构算法1. 重构迭代2. 多分辨率重构算法四、信号的分解和重构(MATLAB)1. 分解和重构程序2. 效果展示总结参考 前言傅里叶级数的一个缺点是,它的构造块是无始无终的周期性正弦波和余弦波。这使得该方法适合于滤除或压缩那些具有近似周期性的波动信号。而面对那些具有显著局部特征的信号,正弦波和余弦波就无能            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-09-18 19:20:14
                            
                                0阅读
                            
                                                                             
                 
                
                             
         
            
            
            
             采用数字滤波算法克服随机干扰的误差具有以下优点:a.数字滤波无需其他的硬件成本,只用一个计算过程,可靠性高,不存在阻抗匹配问题。尤其是数字滤波可以对频率很低的信号进行滤波,这是模拟滤波器做不到的。b.数字滤波使用软件算法实现,多输入通道可共用一个滤波程序,降低系统开支。c.只要适当改变滤波器的滤波程序或运算,就能方便地改变其滤波特性,这对于滤除低频干扰和随机信号会有较大的效果。d.在单            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-10-27 11:25:13
                            
                                118阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            小波变换应用领域:信号处理、图像处理领域内的应用:信号(图像)的降噪、压缩小波变换的优势:在正交小波中,正交基的选取比传统方法更接近实际信号本身,所以通过小波变换可以更容易地分离出噪声或其他我们不需要的信息,因此在这类应用中小波分析有着传统方法无可比拟的优势。降噪和压缩这两种应用有一个共同点在于他们都是尽量把无用的信息从原始信号中剔除,所以Matlab提供了一条通用的命令wdencmp,同时处理降            
                
         
            
            
            
            提升小波 Python 算法
## 介绍
小波变换是一种用于分析和处理信号的数学工具。它可以将信号分解成不同尺度和频率的组成部分,从而方便地进行信号处理和分析。在 Python 中,我们可以使用 PyWavelets 库来实现小波变换。本文将介绍如何使用 PyWavelets 来提升小波 Python 算法的效率和性能。
## 安装 PyWavelets
首先,我们需要安装 PyWavel            
                
                    
                        
                                                            
                                                                        
                                                                                        原创
                                                                                    
                            2023-10-18 10:53:12
                            
                                237阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            从傅里叶变换到小波变换,并不是一个完全抽象的东西,可以讲得很形象。小波变换有着明确的物理意义,如果我们从它的提出时所面对的问题看起,可以整理出非常清晰的思路。  下面我就按照傅里叶-->短时傅里叶变换-->小波变换的顺序,讲一下为什么会出现小波这个东西、小波究竟是怎样的思路。(反正题主要求的是通俗形象,没说简短,希望不会太长不看。。)  一、傅里叶变换  关于傅里叶变换的基本概念在此我            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-12-19 19:27:23
                            
                                29阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            在提取目标的局部空间和频率域信息上,Gabor小波变换具有良好的特性,对图像进行Gabor小波变换,就类似于人类视网膜中的简单细胞对图像刺激作出的响应。Gabor小波变换不仅仅可以提取出图像纹理的特征,并且可以减小光照和位置对图像识别造成的干扰。一般对图像进行Gabor小波变换提取特征后,还要进行降维处理,以提高运算效率。一、二维Gabor小波核函数定义式中,对于Gabor核函数,u为方向,v为尺            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-09-25 10:36:02
                            
                                279阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            # 如何在Java中实现小波变换
小波变换是一种信号处理技术,旨在通过将信号分解为多个频带以提取特征。在Java中实现小波变换的过程并不复杂,但对于刚入行的小白而言,可能会觉得有些棘手。本文将逐步带您完成在Java中实现小波变换的流程。
## 整体流程
以下是实现小波变换的大致流程:
| 步骤  | 描述                                      |
|--            
                
         
            
            
            
            文章目录傅里叶前言分类公式优缺点小波变换连续小波变换(CWT)离散小波变换(DWT)小波图像去噪小波阈值去噪实现代码:  小波变换由傅里叶变换发展而来,傅里叶变换对非平稳过程有局限性,所以提出了小波变换。先对傅里叶进行简单的梳理。 傅里叶傅里叶级数在时域是一个周期且连续的函数,而在频域是一个非周期离散的函数。傅里叶变换是将时域非周期的连续信号转换为一个在频域非周期的连续信号。前言其方法的通俗理解            
                
         
            
            
            
            傅里叶变换->小波变化傅里叶变换FT基础知识(FOURIER TRANSFORM,简称FT)为什么傅里叶变换可以把一个信号从时域变换到频域?先给出公式,傅里叶变换的形式为:\(X(w)=\int_{-\infty}^{+\infty} x(t) e^{-j w t} d t\)PS:傅里叶变换还存在系数,有的文章写的是 \(\frac{1}{2 \pi}\) ,有的文章写的是\(\sqrt\            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-01-16 16:18:57
                            
                                108阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            # 小波变换算法 Python 实现教程
## 概述
作为一名经验丰富的开发者,我们来教会一位刚入行的小白如何实现“小波变换算法 Python”。小波变换是一种信号处理技术,用于分析非平稳信号。在这篇文章中,我们将介绍整个实现流程,并给出每一步需要做的事情和对应的代码示例。
## 流程
下面是实现“小波变换算法 Python”的整个流程,我们可以用表格展示出每个步骤:
| 步骤 | 操作            
                
                    
                        
                                                            
                                                                        
                                                                                        原创
                                                                                    
                            2024-04-10 04:43:33
                            
                                161阅读