【前言】图像预处理对于整个图像处理任务来讲特别重要。如果我们没有进行恰当的预处理,无论我们有多么好的数据也很难得到理想的结果。本篇是视觉入门系列教程的第二篇。整个视觉入门系列内容如下:理解颜色模型与在图像上绘制图形(图像处理基本操作)。基本的图像处理与滤波技术。从特征检测到人脸检测。图像分割与分水岭(Watershed)算法(TBU)在边缘和轮廓检测中,噪声对检测的精度有很大的影响。
灰度变换一、灰度变换概念二、灰度变换的作用三、灰度变换的方法灰度化一、灰度的概念二、对彩色图进行灰度化1.加权平均值法2.取最大值3.平均值灰度的线性变换1.线性变换2.分段线性变换灰度的非线性变换1.对数变换2.幂律变换总结 一、灰度变换概念在图像预处理中,图像的灰度变换是图像增强的重要手段,灰度变换可以使图像对比度扩展,图像清晰,特征明显,灰度变换主要利用点运算来修正像素灰度,由输入像素点的
转载
2023-09-02 08:51:39
123阅读
# Java OpenCV 图像灰度处理
## 简介
在计算机视觉和图像处理中,图像灰度处理是一种常见的操作。灰度处理是将彩色图像转换为灰度图像的过程,灰度图像中的每个像素只有一个亮度值,通常在0到255之间。灰度处理可以简化图像处理的复杂性,减少计算量,并提取图像中的有用信息。
OpenCV是一个开源的计算机视觉库,提供了丰富的图像处理功能。在Java中使用OpenCV进行图像灰度处理非常
原创
2023-09-04 13:39:34
163阅读
文章目录一、灰度处理1.1 cvtColor函数二、图像二值化处理2.1 全局阈值2.2 自适应阈值 一、灰度处理1.1 cvtColor函数函数原型:cv2.cvtColor(src, code[, dst[, dstCn]]) -> dst功能:转换图像颜色空间。参数:src: 输入图像。code: 颜色空间转换代码。可以取常量cv2.COLOR_BGR2GRAY或cv2.COLOR_
转载
2024-06-26 15:36:06
409阅读
图像二值化和灰度化是计算机视觉和图像处理中常见的操作,用于简化图像信息和提取关键特征。在本文中,我们将介绍如何在OpenCV中进行图像二值化和灰度化处理,以帮助读者掌握OpenCV中的图像处理技巧。如何在OpenCV中进行图像二值化和灰度化处理?一、图像灰度化处理 灰度化是将彩色图像转换为灰度图像的过程,将RGB图像的每个像素的红、绿、蓝三个通道的值取平均,得到灰度图像的像素值。在OpenCV中,
初学图像处理的人,一般首先熟悉图像格式,图像存储方式,8位灰度图,24位彩色图等基础知识,然后接触到的图像算法一般都是图像直方图、图像二值化处理等基础算法。二值化算法作为图像处理入门级算法,在很多场合都有应用。常用的二值化算法是固定阈值二值化,算法本身很简单,机器视觉处理的很多都是8位灰度图像,灰度值从0到255,。所谓二值化就是给定一个阈值,让小于这个阈值的灰度值为0,大于等于这个
转载
2023-07-28 15:53:14
214阅读
目录一、灰度原理1.1 图像的存储与像素1.1.1 像素与分辨率1.1.2 物理原理1.2 RGB图像1.3 灰度图像二、RGB转灰度公式一、灰度原理1.1 图像的存储与像素1.1.1 像素与分辨率像素是影像显示的基本单位,是一个具有明确位置和颜色值的方格。分辨率指的是一个显示系统对图像细节的分辨能力,通常以长边像素个数乘以宽边像素个数来表示。目前有多种分辨率,如VGA,HD,4K等。以VGA为例
转载
2024-03-25 17:14:50
204阅读
阈值化(Threshold) 阈值化,即图像的二值化处理就是讲图像上的点的灰度置为0或255,也就是讲整个图像呈现出明显的黑白效果。即将256个亮度等级的灰度图像通过适当的阀值选取而获得仍然可以反映图像整体和局部特征的二值化图像。在数字图像处理中,二值图像占有非常重要的地位,特别是在实用的图像处理中,以二
转载
2024-02-20 12:35:35
43阅读
形态学图像处理是指,以数学形态学为工具从图像中提取表达和描绘区域形状的有用图像分量,如边界、骨架和凸壳等,以及预处理或后处理的形态学技术,如形态学滤波、细化和修剪等。形态学运算时用集合来定义的。在图像处理中,我们使用两类像素集合的形态学:目标元素和结构元(SE)。通常,目标定义为前景像素元素集合。结构元可以按照前景像素和背景像素来规定。此外,结构元有时会包含所谓的“不关心”元素,这意味着SE中这个
转载
2024-06-13 21:01:32
129阅读
引言OpenCV是计算机视觉中经典的专用库,其支持多语言、跨平台,功能强大。OpenCV-Python为OpenCV提供了Python接口,使得使用者在Python中能够调用C/C++,在保证易读性和运行效率的前提下,实现所需的功能。 1.图像的基本概念灰度:灰度使用黑色来显示物体,即黑色为基准色,不同饱和度的黑色来显示图像。 通常,像素值量化后用一个字节(8B)来表示,如把有黑-灰-白连续变化的
转载
2023-11-20 10:40:07
120阅读
点运算又称为对比度增强、对比度拉伸或灰度变换,是一种通过图像中的每一个像素值(即像素点上的灰度值)进行运算的图像处理方式。它将输入图像映射为输出图像,输出图像每个像素点的灰度值仅由对应的输入像素点的灰度值决定,运算结果不会改变图像内像素点之间的空间关系,其运算的数学关系式: 其中表示原图像,表示经过点运算处理后的图像,表示点运算的关系函数。按照灰度变换的数学关系点运算可以分为线性灰度变换、分段线性
转载
2024-03-28 19:01:33
61阅读
C++版的opencv读取灰度图像可以有不同的方法,这里列出几种方法,并简述它们的区别。这里用到的两张图片为lena.jpg(彩色)和lena.bmp(灰度)直接读取灰度图像图像本身就是灰度图像,直接使用imread()读取图像:#include <opencv2/opencv.hpp>
#include <iostream>
using namespace cv;
usi
转载
2023-08-09 14:41:35
387阅读
对数变换的公式为:其中c为常数,r>=0 对数变换目前我知道的有两个作用:①因为对数曲线在像素值较低的区域斜率较大,像素值较高的区域斜率比较低,所以图像经过对数变换之后,在较暗的区域对比度将得到提升,因而能增强图像暗部的细节。②图像的傅里叶频谱其动态范围可能宽达0~10^6。直接显示频谱的话显示设备的动态范围往往不能满足要求,这个时候就需要使用对数变换,使得傅里叶频谱的动态范围被合
转载
2024-08-29 16:13:12
13阅读
本文已收录于Opencv系列专栏: 深入浅出OpenCV ,专栏旨在详解Python版本的Opencv,为计算机视觉的开发与研究打下坚实基础。免费订阅,持续更新。图像属性1.图像格式图像压缩比: 通过编码器压缩后的图象数字大小和原图象数字大小的压缩比。BMP 格式
Windows系统下的标准位图格式,未经过压缩,一般图像文件会比较大。在很多软件中被广泛应用。JPEG 格式
也是应用最广泛的
推荐
原创
2022-10-25 09:22:05
2804阅读
文章目录10 膨胀与腐蚀(1)形态学操作(morphology operators)——膨胀、腐蚀(2)相关API(3)动态调整结构元素大小TrackBar11 形态学操作(1)开操作- open(2)闭操作- close(3)形态学梯度- Morphological Gradient(4)顶帽- Tophat(5)黑帽- Blackhat(6)API12 形态学操作应用——提取水平与垂直线(1
转载
2023-08-20 22:41:53
248阅读
一、图像的灰度化处理的基本原理将彩色图像转化成为灰度图像的过程成为图像的灰度化处理。彩色图像中的每个像素的颜色有R、G、B三个分量决定,而每个分量有255中值可取,这样一个像素点可以有1600多万(255*255*255)的颜色的变化范围。而灰度图像是R、G、B三个分量相同的一种特殊的彩色图像,其一个像素点的变化范围为255种,所以在数字图像处理种一般先将各种格式的图像转变成灰度图像以使后续的图像
转载
2023-08-09 16:33:06
306阅读
呃,OpenCV(中文)是Intel主导的开源图像处理函数库,基于C语言编写,是图像处理领域居家旅行必备、男女老少咸宜的开发库。 上学的时候用OpenCV做过图像处理方面的开发,现在刚接触iOS,了解了一下OpenCV在iOS平台的配置和开发方法,配置过程和遇到的问题简单做一下记录。 环境配置 OpenCV src 首先把最新版本的OpenCV代码下载或co到本地,比如我把OpenCV-2.1.
【步骤】1、滤波:减少噪声,主要使用高斯滤波2、增强:增强算法可以将图像灰度点邻域强度值有显著变化的点凸显出来,在具体编程实现时,可通过计算梯度幅值来确定。3、检测:经过增强的图像,往往邻域中有很多点的梯度值比较大,而在特定的应用中,这些点并不是我们要找的边缘点,所以应该采用某种方法来对这些点进行取舍。通常用阈值【cannny算子】Canny 的目标是找到一个最优的边缘检测算法(低错误率、高定位性
转载
2024-06-05 07:16:03
446阅读
一、 前言 OpenCV是开源的跨平台的计算机视觉库,实现了图像处理、计算机视觉和机器学习的很多通用算法。对于移动设备没有快速输入的键盘,大的屏幕,其优势在于图像和声音,因此要发挥好移动设备的性能,必须很好的利用这一特点。本文档主要说明如何在iOS系统中使用OpenCV。二、&nb
转载
2023-09-13 17:44:47
0阅读
图像的组成灰度:灰度使用黑色调表示物体,即用黑色为基准色,不同的饱和度的黑色来显示图像。 每个灰度对象都具有从 0%(白色)到 灰度条100%(黑色)的亮度值。灰度最高相当于最高的黑,就是纯黑。灰度最低相当于最低的黑,也就是“没有黑”,那就是纯白。用于显示的灰度图像通常用每个采样像素8 bits的非线性尺度来保存,这样可以有256种灰度(8bits就是2的8次方=256),取值
转载
2024-03-06 00:27:27
165阅读