API:HOGDescriptor(Size _winSize, ---:窗口大小,即检测的范围大小,前面的64*128Size _blockSize,--- 前面的2*2的cell,即cell的数量,这里要填像素值Size(16,16)Size _blockStride,---每次block移动的步长,以像素计,为一个cell像素块大小Size _cellSize, ---cell的大小,前
转载
2018-10-02 20:27:00
304阅读
HOGDescriptor hogDescriptor = HOGDescriptor(); hogDescriptor.setSVMDetector(hogDescriptor.getDefaultPeopleDetector()); vector<Rect> vec_rect; hogDescr
转载
2018-10-05 09:50:00
218阅读
2评论
1. HOG特征简介特征描述符是图像或图像补丁的表示形式,它通过提取有用信息并丢弃无关信息来简化图像。通常,特征描述符将大小W x H x 3(通道)的图像转换为长度为n的特征向量/数组。对于 HOG 特征描述符,输入图像的大小为 64 x 128 x 3,输出特征向量的长度为 3780。在HOG特征描述符中,梯度方向的分布(直方图)被用作特征。图像的渐变(x和y导数)很有用,因为边缘和角落(强度
转载
2024-04-12 03:46:13
58阅读
下面开始看源码。 HOG特征检测源码在opencv/sources/modules/object/src/hog.cpp 和 object.h文件里。 object.h文件里HOG检测代码如下: //////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector ///////
原创
2014-04-22 10:07:00
1336阅读
1. 理论基础使用OpenCv进行行人检测的主要思想: HOG + SVM HOG: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。HOG特征通过计算和统计图像局部区域的梯度方向直方图来构成特征. SVM: (Support Vector Machine)指的是支持向量机,是...
原创
2021-09-01 10:58:52
4228阅读
HOG特征描述首先我们来了解一下HOG特征描述子。HOG特征描述子(HOG descriptors)是由Navneet Dalal和 Bill Triggs在2005年的一篇介绍行人检测方法的论文提到的特征描述子(论文以及演讲可参见参考资料1、2)。其主要思想是计算局部图像梯度的方向信息的统计值,来作为该图像的局部特征值。如上图,归一化图像后,由于颜色数据对我们没有帮助,所以将图片转为灰度图。然后
本文主要介绍下opencv中怎样使用hog算法,因为在opencv中已经集成了hog这个类。其实使用起来是很简单的,从后面的代码就可以看出来。本文参考的资料为opencv自带的sample。 关于opencv中hog的源码分析,可以参考本人的另一篇博客:opencv源码解析之(6):hog源码分析开发环境:opencv2.4.2+Qt4.8.2+ubuntu12.04+QtCrea
转载
2023-07-05 13:16:05
277阅读
最近在看论文《Histograms of Oriented Gradients for Human Detection》,是05年提出来的,opencv中对应的实现源码放在modules/objdetect/srchog.cpp里。在这里做个记录。参考资料:首先说一下最基本的流程,如下图(原图)基本上就是利用滑动窗口在图像金字塔上固定步长搜索,每次提取窗口内的hog特征,送入svm进行分类是否有目
转载
2024-03-01 22:50:08
105阅读
参考文章:OpenCV中的HOG+SVM物体分类 此文主要描述出HOG分类的调用堆栈。 使用OpenCV作图像检测, 使用HOG检测过程,其中一部分源代码如下:1.HOG 检测底层栈的检测计算代码: 貌似在计...
转载
2017-03-21 16:50:00
254阅读
2评论
目前基于机器学习方法的行人检测的主流特征描述子之一是HOG(Histogram of Oriented Gradient, 方向梯度直方图)。HOG特征是用于目标检测的特征描述子,它通过计算和统计图像局部区域的梯度方向直方图来构成特征,用这些特征描述原始图像。HOG的核心思想是所检测的局部物体外形能够被光强梯度或边缘方向的分布所描述。通过将整幅图像分割成小的连接区域(称为cells),每个cell
转载
2016-11-05 19:24:00
318阅读
梯度直方图特征(HOG)是一种对图像局部重叠区域的密集型描述符,它通过计算局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的...
原创
2021-07-16 15:02:33
538阅读
目录0 原理 1 OpenCV 中的直方图均衡化 2 CLAHE 有限对比适应性直方图均衡化0 原理想象一下如果一副图像中的大多是像素点的像素值都集中在一个像素值范围之内会怎样呢?例如,如果一幅图片整体很亮,那所有的像素值应该都会很 高。但是一副高质量的图像的像素值分布应该很
转载
2024-09-30 15:28:53
42阅读
用HOG进行行人检测时,需要用训练好的支持向量机来对图片进行分类,在opencv中,支持向量机已经训练好,但自己来训练支持向量机才能更好的体会这一过程。 参考:://blog..net/masikkk/article/category/2267523 (感谢这些无私奉献的博...
原创
2022-01-17 18:18:14
711阅读
1 .前言mAP(Mean Average Precision)是用于评估对象检测和信息检索系统性能的重要指标。它综合考虑了检测结果的精确度(Precision)和召回率(Recall),提供了一个整体的性能评价。你是否见过下面的表格?这是COCO版本的mAP(即平均精度,他们简称之为AP)。但这个指标到底代表什么呢?这些符号又都代表什么含义呢?在本文中,我们将详细讲解所有必要的理论知
关于HOG的认识基本是参考Dalal的Histograms of Oriented Gradients for Human Detection这篇论文得来的,并且参照了网上的静止图像上的HOG行人检测代码改成了基础的视频上的行人检测。HOG特征提取的基本思想:局部目标的外表和形状可以被局部梯度或边缘方向的分布很好的描述,即使我们不知道对应的梯度和边缘的位置。数据集:INRIA我自己也下载了INRI
转载
2024-01-25 19:31:09
120阅读
简介 在局部特征点检测快速发展的时候,人们对于特征的认识也越来越深入,近几年来许多学者提出了许许多多的特征检测算法及其改进算法,在众多的特征提取算法中,不乏涌现出佼佼者。 从最早期的Moravec,到Harris,再到SIFT、SUSAN、GLOH、SURF算法,可以说特征提取算法层出不穷。
1.读写图像#include <iostream>
#include <string>
#include <sstream>
//OpenCV提供的跨平台I/O函数core和highgui
//core用于基本的图像数据处理,包含基本类,比如矩阵
//highgui包含读函数、写函数以及用图形界面显示图像的函数
#include "opencv2/core.hp
转载
2024-03-30 17:31:07
82阅读
目录HOG是什么?HOG vs SIFTHOG步骤HOG在检测行人中的方式Ope
原创
2022-06-27 23:40:42
845阅读
1评论
前言HOG特征的全称是Histograms of Oriented Gradients,基于HOG特征的人脸识别算法主要包括HOG特征提取和目标检测,该算法的流程图如下图所示。本文主要讲HOG特征提取。 HOG特征的组成Cell:将一幅图片划分为若干个cell(如上图绿色框所示),每个cell为8*8像素 Block:选取4个cell组成一个block(如上图红色框所示),每个bloc
转载
2023-07-20 21:02:45
170阅读
加载opencv自带的行人检测器,进行识别代码import osimport sysimport cv2import loggingimport numpy as nphog = cv2.HOGDescriptor()hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector())pwd = os.getcwd()test_dir = os.path.join(pwd, 'TestData')cv2.namedWindo
原创
2021-07-29 11:33:14
449阅读