1:最简单的过程:  map - reduce2:定制了partitioner以将map的结果送往指定reducer的过程:  map - partition - reduce3:增加了在本地先进性一次reduce(优化)  map - combin(本地reduce) - partition - reduce 基本上,一个完整的mapreduce过程可以分为以上3中提到的4个步骤,下面
转载 2023-07-12 18:46:42
61阅读
MapReduce是大数据分布式计算框架,是大数据技术的一个核心。它主要有两个函数,Map() 和 Reduce()。直接使用MapReduce的这两个函数编程有些困难,所以Facebook推出了HiveHive支持使用 SQL 语法来进行大数据计算,比如说你可以写个 Select 语句进行数据查询,然后 Hive 会把 SQL 语句转化成 MapReduce
转载 2023-07-12 09:58:08
87阅读
 1.      关键参数配置指导1.1.    Container内存相关1.1.1.   map的内存大小【参数值】mapreduce.map.memory.mb【参数解析】map任务的内存限制。【如何调优】默认:4096MBmapreduce.map.m
Mapreduce的过程整体上分为四个阶段:InputFormat 、MapTask 、ReduceTask 、OutPutFormat,当然中间还有shuffle阶段 读取(InputFormat):我们通过在runner类中用 job.setInputPaths 或者是addInputPath添加输入文件或者是目录(这两者是有区别的)默认是FileInputFor
MapReduce整体处理过程MapReduce是一种计算引擎,也是一种编程模型。MapReduce提供了两个编程接口,即Map和Reduce,让用户能够在此基础上编写自己的业务代码,而不用关心整个分布式计算框架的背后工作。这样能够让开发人员专注自己的业务领域,但如果发生Map/Reduce业务代码以外的性能问题,开发人员通常束手无策。  MapReduce会经历作业输入(In
转载 2023-08-18 22:59:00
107阅读
  包括Mapper(Mapper类)阶段和Reducer(Reducer类)阶段,其中Map阶段和Reduce阶段都包含部分Shuffle阶段工作。  Map阶段block块切分成多个分片,每个输入分片会让一个map进程来处理任务: i. 初始化: 创建context,map.class实例,设置输入输出,创建mapper的上下文任务把分片传递给 TaskTrack
转载 2023-07-06 21:55:40
116阅读
MapReduce merge机制概述在map端和reduce端都会有merge过程,将segments进行多路归并成一个大的segment。在map端,一个spill-N.out文件的每个partition在merge阶段使用一个segment代表。merge过程粗略过程:从segments中每次remove出mergeFactor个segment进行归并,归并为一个大的segment,结束后将
转载 2024-03-28 07:37:44
125阅读
一、实验目的:1. 理解MapReduce的工作机制; 2. 掌握基本的MapReduce编程方法 3. 重点理解map过程,shuffle过程和reduce过程二、实验环境:Hadoop+Eclipse+JDK三、实验内容和要求:1.编程实现文件合并和去重操作对于两个输入文件,即文件A和文件B,请编写MapReduce程序,对两个文件进行合并,并剔除其中重复的内容,得到一个新的输出文件C。下面是
MapReduce过程 MapReduce是采用一种分而治之的思想设计出来的分布式计算框架,它由两个阶段组成:map阶段和reduce阶段。在map阶段中: 首先读取HDFS中的文件,每个文件都以一个个block形式存在,block中的数据会被解析成多个kv对,然后调用map task的map方法;map方法对接收到的k
转载 2023-09-08 11:47:00
115阅读
文章目录1. 前言2. MapReduce工作流程3. MapReduce运行机制4. MapReduce流程处理4.1 MapReduce执行过程图4.2 Split阶段4.3 Map阶段4.4 Combiner阶段4.5 Shuffle阶段4.5.1 Shuffle的前半生4.5.2 Shuffle的后半生4.5.3 Shuffle的人生意义4.6 Reduce阶段5. 灵魂拷问5.1 当缓
转载 2023-12-06 23:54:31
94阅读
mapreducehive 的区别首先: 1.hive本身只是在hadoop map reduce 或者spark 计算引擎上的封装,应用场景自然更局限,不可能满足所有需求。有些场景是不能用hive来实现,就需要map reduce或者spark rdd编程来实现。 2.结构复杂的日志文件,首先要经过ETL处理(使用mapreduce),得到的数据再有hive处理比较合适。直接让hive处理结
转载 2024-08-17 17:23:51
49阅读
之前我们说过了MapReduce的运算流程,整体架构方法,JobTracker与TaskTracker之间的通信协调关系等等,但是虽然我们知道了,自己只需要完成Map和Reduce 就可以完成整个MapReduce运算了,但是很多人还是习惯用sql进行数据分析,写MapReduce并不顺手,所以就有了Hive的存在。首先我们来看看MapReduce是如何实现sql数据分析的。MapReduce实现
转载 2023-07-14 12:52:40
306阅读
MapReduce定义MapReduce是一种分布式计算模型,由Google提出,主要用于搜索领域,解决海量数据的计算问题.MapReduce是分布式运行的,由两个阶段组成:Map和Reduce,Map阶段是一个独立的程序,有很多个节点同时运行,每个节点处理一部分数据。Reduce阶段是一个独立的程序,有很多个节点同时运行,每个节点处理一部分数据。MapReduce框架都有默认实现,用户只需要覆盖
Hive 常见面试题总结:1、Hive的HSQL转换为MapReduce的过程?1、HiveSQL ->AST(抽象语法树) -> QB(查询块) ->OperatorTree(操作树)->优化后的操作树->mapreduce任务树->优化后的mapreduce任务树2、请说明hive中 Sort By,Order By,Cluster By,Distrbute
转载 2023-07-14 23:38:25
43阅读
实验三:MapReduce初级编程实践一、实验目的通过实验掌握基本的MapReduce编程方法;掌握用MapReduce解决一些常见的数据处理问题,包括数据去重、数据排序和数据挖掘等。二、实验平台操作系统:LinuxHadoop版本:2.6.0三、实验步骤(一)编程实现文件合并和去重操作对于两个输入文件,即文件A和文件B,请编写MapReduce程序,对两个文件进行合并,并剔除其中重复的内容,得到
转载 2024-04-24 16:13:58
259阅读
  一、MapReduce执行过程MapReduce运行时,首先通过Map读取HDFS中的数据,然后经过拆分,将每个文件中的每行数据分拆成键值对,最后输出作为Reduce的输入,大体执行流程如下图所示: 整个流程图具体来说:每个Mapper任务是一个java进程,它会读取HDFS中的文件,解析成很多的键值对,经过我们覆盖的map方法处理后,转换为很多的键值对再输出,整个Mapper任务的
1.MapReduce简介MapReduce是一种分布式计算模型.是由Google提出的,主要是解决海量数据的计算。MapReduce主要分为两个阶段:Map和Reduce,用户只需实现map()和reduce()即可实现分布式计算.2.MapReduce实现流程3.MapReduce原理解析:1.阶段是Map阶段:  1.1 读取HDFS中的文本.将每一行都解析成一个个<k,v&
转载 2023-07-20 19:58:46
153阅读
简单的MapReduce实践 文章目录简单的MapReduce实践操作环境实现文件合并和去重操作新建项目新建Java程序打包程序运行程序实现文件的倒排索引第一步,Map第二步,Combiner第三步,Reduce配置参数总体代码参考文章 操作环境操作系统:Ubuntu 16.04JDK 版本:1.8Hadoop 版本:Hadoop 3.1.3Java IDE:Eclipse我的 Hadoop安装目
本来是要整合一下flume和kafka的,结果可能因为配置的问题没成功,等搞定了再写,先了解下pig什么是Apache Pig?Apache Pig是MapReduce的一个抽象。它是一个工具/平台,用于分析较大的数据集,并将它们表示为数据流。Pig通常与 Hadoop 一起使用;我们可以使用Apache Pig在Hadoop中执行所有的数据处理操作。要编写数据分析程序,Pig
转载 2024-08-06 09:09:26
41阅读
本帖最后由 fc013 于 2016-12-3 19:42 编辑问题导读:1.什么是Hive?2.MapReduce框架实现SQL基本操作的原理是什么?3.Hive怎样实现SQL的词法和语法解析?Hive是基于Hadoop的一个数据仓库系统,在各大公司都有广泛的应用。美团数据仓库也是基于Hive搭建,每天执行近万次的Hive ETL计算流程,负责每天数百GB的数据存储和分析。Hive的稳定性和性能
转载 2023-11-16 11:00:39
42阅读
  • 1
  • 2
  • 3
  • 4
  • 5